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Abstract

From scenes to spikes
by

Joel Leon Zylberberg
Doctor of Philosophy in Physics

University of California, Berkeley
Assistant Professor Michael DeWeese, Chair

The human genome (containing ∼ 1010 bits of information) is unlikely to fully
specify the connectivity between neurons in our brains – such a “wiring diagram”
requires ∼ 1014 bits. Physiological evidence suggests that the genome instead specifies
plasticity rules through which the brain self-organizes in response to experience. As
systems neuroscientists, we seek to understand those rules and, by extension, our
brains. In this thesis, I will use this approach to study the primary visual cortex (V1)
– the brain region that receives visual inputs from the eyes, via a relay station called
the lateral geniculate nucleus. I first study the statistical structure of natural images,
which provide the visual experience that shapes V1. Then, I introduce a biophysically
motivated model for visual cortex, which adapts to natural image statistics in order
to efficiently encode them – in this case, the neural plasticity rules can be shown
to optimize this “efficient” representation. I then demonstrate that this model can
account for several features of V1 physiology, including the features to which V1
neurons respond (“receptive fields”), and the developmental trends in the sparseness
of V1 activity. I will conclude that efficient coding models can be implemented within
the constraints imposed by the neural substrate, and that efficient coding principles
may yield a parsimonious systems-level understanding of visual cortex.
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Chapter 1

Introduction

1.1 Why study vision?

Vision is (arguably) our dominant sensory modality. As such, we are strongly mo-
tivated to understand the transformation from raw visual input, into perception of
our surroundings. A detailed understanding of this process will help us to better un-
derstand our own experiences, and to make machines that can mimic our impressive
visual abilities, like object recognition.

Furthermore, if we can understand our visual system mechanistically, we will be
better able to diagnose and treat visual dysfunctions, as the mapping from symptom
to disease will be more apparent. As an added medical bonus, a detailed under-
standing of how visual stimuli are encoded by neurons may help to create prosthetic
technologies that can interface with the brain. For example, consider a patient with
damaged eyes, but an otherwise fully functioning visual system. Hypothetically, one
could replace their eyes with cameras, but how would those cameras communicate
with the brain?

Somewhat more pedantically, visual systems provide a very appealing preparation
for understanding neural systems more generally: for those seeking to understand the
input-output relationships in neural systems, and thus the computations that they
perform, the visual system, having a well-defined and controllable input space, is
a natural starting point. In other words, with vision, we can control the input by
controlling the stimulus shown to the animal, and study the corresponding neural
responses. So long as there are universal aspects to the computations performed by
neural circuits, the results from visual-neural studies should inform our understanding
of other sensory and neural systems.

Thusly motivated, I will begin this introductory chapter by summarizing the gross
anatomy of the mammalian visual system, the physiological properties of visual cor-
tical neurons, and the characterization thereof. I will then summarize evidence which
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Chapter 1. Introduction

suggests that the visual cortical physiology is a function of the visual stimuli expe-
rienced by the animal during development. This will motivate the technical work
presented in the later chapters of this thesis, in which I will attempt to understand
the origins of the statistical properties of natural images, and how the constraints
implicit in the architecture of the visual cortex affect its ability to adapt to natural
scene statistics. This work, and the literature reviewed herein, provide some insight
into both how certain aspects of the visual physiology arise, and why those properties
are useful to the animal.

1.2 Gross anatomy of the mammalian visual system

In order to understand the input-output properties of the primary visual cortex, we
must first understand where those inputs come from. For our purposes, a some-
what cursory knowledge of the mammalian visual anatomy will suffice, such as that
of [Dayan and Abbott, 2001] (Fig. 1.1). In very gross terms, people have two eyes,
into which light from the surrounding environment enters, via the pupil, and forms
an image on the retina, the photosensitive back surface of the eyeball. Intriguingly,
the retina is “inside out”, with the photoreceptors lying on the back surface. This
means that light must travel through the full thickness of the retina before it can be
detected by the photoreceptor (rod and cone) cells.

The photoreceptor cells encode the rate of photon capture by varying (along a
continuum) their membrane potential, resulting in graded variation of the amount of
glutamate (a neurotransmitter) they release into synaptic junctions between them-
selves and the bipolar cells, which then project to the retinal ganglions cells (RGCs),
whose axonal projections (the “output” side of the cell) form the optic nerve. The
bipolar cell physiology, and the lateral connectivity within the retina (by, for example,
the horizontal, and amacrine, cells) are not particularly germane to this work. For
an excellent overview of retinal anatomy and physiology, interested readers should
consult WEBVISION [Kolb et al., 2011].

The graded response of the photoreceptor cells, wherein the output varies along
a continuum is in distinct contrast to the behavior of the majority of the neurons in
the central nervous system, which output only punctate “spikes” of electrical activity
called action potentials. Spiking cells include the RGCs, and all cortical neurons, and
we will discuss them in more detail below.

The optic nerve projects to the lateral geniculate nucleus (LGN), which then
projects to the primary visual cortex (V1).

2



Chapter 1. Introduction

Figure 1.1: Gross anatomy of the peripheral mammalian visual system. Axons
from the retinal ganglions cells form the optic nerve, which projects back into the head:
neuronal projections are indicated by dashed lines in the figure. The temporal RGCs
(those further from the sagittal plane) project to the ipsilateral LGN, while the nasal
RGCs project to the contralateral LGN. The contralateral projections cross the midline at
the optic chiasm (not labeled). These are color coded in the diagram, with the projections
to the left half labeled in red and those projecting to the right half labeled in blue. The
lateral geniculate nuclei project to the ipsilateral primary visual cortices such that the
visual information represented in the left V1 corresponds to the right half of the visual
field of view, and vice versa. This can be seen by ray-tracing from a point source in, say,
the right half of the field-of-view, and noting that it is imaged onto the left halves of both
retinae, while the left halves of both retinae project to the left LGN and from there to
the left V1. For reference, the sagittal plane is shown: it runs vertically, between the two
eyes. This figure is an adaptation of one from Dayan & Abbott.
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Chapter 1. Introduction

1.3 What does a neuron look like and what does it
do?

1.3.1 Neuronal anatomy and physiology physiology

To build a realistic model of how neural activities encode the stimulus, we require a
basic knowledge of neural physiology: what is the “output” of a neuron, what are its
“inputs”, and how does it generate the output from those inputs? In this discussion, I
will emphasize cortical neurons, which I will later be modeling. The same statements,
however, also apply to retinal ganglion cells, and to neurons in the lateral geniculate
nucleus.

While neurons come in very different shapes and sizes, cortical neurons have three
main anatomical features: the axon, dendrites, and the soma [Dayan and Abbott,
2001] (Fig. 1.2).

Figure 1.2: Cartoon of a neuron. Neurons have three major components: the axon,
soma (cell body), and dendrites. The synapses (shown as black circles) are typically
the connections between the axon of one cell and the dendrite of another, where the
axon is the cell’s “output”, and the dendrites are the cell’s “inputs”. Both the axon and
the dendrites can be highly branched, as cortical neurons are highly interconnected. This
diagram is not to scale, nor does it reflect the specific morphology of any particular neuron
type.

The cells have ion pumps embedded in their membranes that maintain a voltage
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Chapter 1. Introduction

difference across the cell membrane: the cytoplasm of a neuron at rest is roughly
−70 mV relative to the extracellular medium [Dayan and Abbott, 2001].

Inputs to the neuron (from other neurons) come into the cell at the dendrites,
which form branching tree-like structures. These inputs change the membrane po-
tential of the neuron: they can raise (excitatory inputs), or lower (inhibitory inputs)
it. When the membrane potential is increased to a sufficiently high level, the neuron
emits an action potential, or stereotyped “spike” of electrical activity that travels
down the axon of the cell, where it impinges on the dendrites of neighboring neu-
rons at connections called synapses. An excellent example of the time course of the
membrane potential during the spiking events is given by [Mainen and Sejnowski,
1995].

The strengths of the synaptic connections between neurons change in response to
the relationships between the pre- and post-synaptic activity; this is believed to be
one of the major ways that learning happens in the brain [Dayan and Abbott, 2001;
Dan and Poo, 2006; Feldman, 2009].

The soma, or body of the cell, lies between the dendrites and the axon, and is
thought to play a major role in the computations performed by the cell, namely in
determining when to spike.

The action potentials are essentially indistinguishable: while the membrane po-
tential of the neuron is a continuous-valued function of time, all of the information
output by a cortical neuron (to other neurons) is carried in the binary time-sequence
of its spiking activity (“on” or “off” at each moment in time) [Dayan and Abbott,
2001]. There is much debate in the field about whether this information is carried
in the rate at which the spikes are transmitted (rate coding) [London et al., 2010;
Shadlen and Newsome, 1994], or the specific times at which the spikes are emitted
(spike code) [Bialek et al., 1991]. Of course, it is also possible that different parts of
the brain employ different coding schemes.

1.3.2 Simplified neuronal models

To formalize our study of neural systems, we require a mathematical model of the
neuronal electrophysiology. The most realistic neuronal model is described by the
Hodgkin-Huxley equations, which describe the behavior of several different types of
voltage-gated ion channels, and their effects on the membrane potential [Izhikevich,
2007; Hodgkin and Huxley, 1952]. The Hodgkin-Huxley equations are, unfortunately,
quite complicated, difficult to analyze, and computationally expensive to simulate.

To simplify our lives, and allow for efficient simulations, theorists frequently use
models that dramatically simplify the neuronal physiology. For the work presented
herein, I will use the leaky-integrate-and-fire model (LIF, described below) [Dayan
and Abbott, 2001]. Many other neuron models exist, including quadratic integrate-
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Chapter 1. Introduction

and-fire, and exponential integrate-and-fire, which are more realistic than the LIF
model [Izhikevich, 2007], at the expense of added computational cost to simulate.

Figure 1.3: Circuit diagram of the leaky integrate-and-fire neuron model.
The upper portion of the image (above the resistor and capacitor) represents the cyto-
plasm (inside) of the cell, while the lower portion (ground) represents the extracellular
medium. Input currents (from action potentials impinging on dendritic synapses) cause
the voltage across the capacitor to increase, while leakage (through passive ion channels
in the membrane) causes the voltage to decrease. When the voltage exceeds the bias
voltage of the diode, the capacitor discharges through a very small resistance Rout << R,
resulting in the capacitor being grounded, and an output voltage Vout being generated.
The diode corresponds roughly to the behavior of voltage-gated ion channels in the cell
membrane of a neuron. The resistors are denoted as cylinders to highlight the fact that
they correspond to transmembrane ion channels.

In a LIF neuron model (Fig. 1.3), each neuron has a “hidden variable” u associated
with it, that corresponds roughly to its membrane potential (the voltage difference
between the cytoplasm and extracellular medium: considering the cell membrane as a
capacitor, this is proportional to the amount of charge stored in the cell). The inputs
xi that reach the cell at synapses (with weights wi) collectively act as a current source,
increasing the membrane potential, or the charge on the capacitor.

The hidden variable evolves in time via

du

dt
= −u(t) +

∑
i

wixi(t). (1.1)

Note that this is identical to the differential equation for the voltage across the
capacitor in a parallel RC circuit with unit resistance and capacitance, and input
current

∑
iwixi(t).

When the hidden variable exceeds some threshold θ, the neuron emits a spike of
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Chapter 1. Introduction

Figure 1.4: Leaky integrate-and-fire dynamics. The membrane potential of a LIF
neuron is shown as a function of time. The neuron is receiving a constant excitatory
input, with occasional pulses of inhibition that depolarize the membrane. Whenever the
membrane potential exceeds the threshold, the neuron produces a spike before returning
to its resting voltage (0). The spikes (shown in pink) are the only aspect of the neuronal
state that are communicated to other neurons in this class of model. In the absence of
inhibitory pulses, this neuron, by virtue of the constant excitatory input, would spike at
regular intervals. In the (discrete time) simulation, the membrane potential was recorded
after the update in each time step, so the reset to 0 after each spike is not visible. The
alternative strategy, recording the membrane potential before the update, means that the
spiking events, where the potential reaches threshold, would not be seen.

activity (Fig. 1.4).

vout(t) = Θ (u(t)− θ) , (1.2)

where Θ(.) is the Heaviside step function. Roughly speaking, this step corresponds
to the actions of voltage-gated ion channels in the cell membrane [Izhikevich, 2007].
Once the neuron spikes, the hidden variable returns to its resting value of 0.

1.3.3 Characterizing neuronal response properties

Given a neuron in the visual system, it is very natural to ask what it is, exactly, that
the neuron does. As we have seen above, the trivial response is “the neuron emits
spikes whenever it is sufficiently excited”. Our goal, however, is to understand the
neural system, and the computations performed thereby, so such a response is not
particularly useful. Instead, we wish to understand which properties in the visual
stimulus cause the neuron to spike; the canonical assumption in the field is that
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Chapter 1. Introduction

whatever aspect of the stimulus causes the neuron to spike is presumably the feature
that the neuron represents in the mental “model” of the visual input.

The canonical way to approach this problem is to assume that the neuron is a
linear time-invariant filter (LTI filter): the rate r at which the neuron fires is a linear
function of the inputs to that neuron, and that filter function does not vary with
time [Dayan and Abbott, 2001].

In the case of images formed by, say, the intensity values of discrete pixels (which
loosely correspond to the outputs of the retinal ganglion cells), we can write down
the filter as a vector wi. The neuron’s firing rate at time k, rk, in response to the kth

input image (with pixels indexed by i) xik is

rk =
∑
i

xikwi. (1.3)

In practice, this convolution is also done over the temporal sequence of images
input to the eyes [Dayan and Abbott, 2001], but we consider static inputs for simplic-
ity. The task, then, is do determine the filter wi that defines the inputs to which the
neuron is sensitive. Imagine performing an experiment where the animal is shown a
set of images {xik} with zero ensemble mean (

∑
k xik = 0), and we have estimated

the firing rate rest,k of the target cell for each of these stimuli. In order to minimize
the average error between our LTI model, and our data (averaged across all the stim-
uli we presented), we minimize the function E =

∑
k (rest,k −

∑
iwixik)

2 [Dayan and
Abbott, 2001]. This yields

∂E

∂wn
= −2

∑
k

(
rest,k −

∑
i

wixik

)
xnk = 0 (1.4)

=⇒ 〈rest,kxnk〉 =

〈∑
i

wixikxnk

〉
, (1.5)

where the angular brackets 〈.〉 denote the average over the ensemble of stimuli,
with indices k. Now, since we assume that the filter wi is constant over all stimulus
presentations, it comes out of the average, leaving

〈rest,kxnk〉 =
∑
i

wi 〈xikxnk〉 . (1.6)

If the stimulus is white noise (the spatial pixel-pixel autocorrelation function is a
delta function), then 〈xikxnk〉 = δinσ

2, where σ2 is the variance of the (assumed to be
zero-mean) pixel values. In that case, our best estimate of the filter is simply wi =
〈rest,kxik〉 /σ2: the activity-triggered average of our white-noise stimulus ensemble. In
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Chapter 1. Introduction

practice, one counts the spikes to estimate the rate rest: thus, this becomes a spike-
triggered averge. This estimated filter function is frequently referred to as the receptive
field of the neuron. These receptive fields are frequently measured in physiology
experiments (for example, [Ringach, 2002]). Examples of receptive fields (RFs) of
neurons in macaque V1 are shown in Fig. 1.5. The RFs tend to resemble edge filters,
meaning that the neuron responds to places were bright and dark regions abut one
another, and Gabor wavelets (1-D sinusoid multiplied by a 2-D Gaussian).

Figure 1.5: Spike triggered average receptive fields of macaque V1 neurons
in response to stimulation with natural images. Each square in the above grid
shows the receptive field of one neuron in macaque monkey primary visual cortex (courtesy
of D. Ringach). The white pixels have brightness values above the mean (grey), while
the black ones have brightness values below the mean. The RFs to the right of the break
have an angular scale (degrees of visual angle spanned horizontally by the displayed RF
window) of 0.94o whereas those to the left of it span 1.88o.

In the case where the pixels in the stimulus are correlated (〈xikxnk〉 6= δinσ
2), the

“correct” linear filter can be obtained by multiplying the STA estimate by the inverse
of the autocovariance matrix of the pixel values.

Of course, given that (as we have seen above), neurons are not linear functions of
their inputs, STA is not necessarily a good way to characterize neuronal responses,
although it does yield the mean of the spike-conditional image distribution. A more
sophisticated way to cast this problem is to instead ask which linear combinations of
pixel values have the largest mutual information between themselves and the neuronal
response (spiking or not spiking) [Sharpee et al., 2004]. The weights that enter the
linear combination are called the maximally informative dimensions (MIDs), and
these have also been measured experimentally. They tend to look similar to the STA
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receptive fields [Sharpee et al., 2006]. Even though MID is a more sophisticated tool
for characterizing neural responses, and does not rely on any shaky assumptions (like
the neuron being linear or time-invariant, neither of which are strictly true [Sharpee
et al., 2006]), STA RFs remain the standard way to characterize the features to which
neurons respond.

One of the major goals of this thesis is to extend our understanding of why these
receptive fields have the shapes they have, in relation to the statistical properties of
natural visual stimuli.

1.4 Visual systems are (at least partially) a product of
their environment

The human genome contains ∼ 1010 bits of information: ∼ 5× 109 base pairs [Venter
et al., 2001], each of which has 4 possible states, and thus contains log2 4 = 2 bits of
information per base pair. At the same time, to specify which pairs of neurons are
connected within the human brain would require around ∼ 1014 bits of information.
There are around 1010 neurons in human cortex with around 1013 synapses connect-
ing pairs of neurons [Shepherd, 2004]. Assuming the synapses are roughly equally
distributed over the neurons, given a particular synapse on one neuron, specifying
which other neuron is involved requires around log2 1010 ≈ 35 bits per synapse.

Thus, since the genome contains less information than would be required to specify
this wiring diagram (not to mention that the genome must specify other things besides
just cortical wiring!), it cannot be the case that the cortical organization is strictly
genetic. Instead, one might speculate that the genome contains a set of instructions
by which the brain self-organizes in response to its experiences.

In the case of the visual system, then, one might reasonably expect that visual
experience during the animal’s maturation period would have a profound impact on
the animal’s visual physiology.

Indeed, this expectation is borne out by experimentation. For example, Imbert
and Buisseret raised a group of kittens in the dark, thus depriving them of visual
experience. They then compared the response properties of the visual cortical neu-
rons of the dark-reared kittens to those of kittens reared in a normal, visually rich,
environment. While the control kittens’ visual cortical neurons were selective (as per
usual) to both the orientation, and the direction of motion of a bar stimulus, the
dark-reared kittens’ neurons were less selective to both of these features [Imbert and
Buisseret, 1975] .

Similarly, kittens that are reared in stroboscopic illumination conditions have
visual cortical cells that are less selective to stimulus direction and orientation than
do normally reared cats [Cynader et al., 1973].

10
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Similar results are obtained in both cats and ferrets, where orientation and direc-
tion selectivity increase during maturation [White and Fitzpatrick, 2007].

We are thus led, both by developmental studies, and by information-theoretic
arguments, to the conclusion that the visual system is likely to be, at least in part, a
product of the animal’s environment.

At the same time, one might argue that, as a result of evolution, an animal’s
visual system should be organized so as to function efficiently in its environment.
Indeed, this is a popular notion for understanding visual systems [Barlow, 1961;
Simoncelli and Olshausen, 2001; Attneave, 1954; Linsker, 1986].

For now, it suffices to accept that the visual physiology reflects the statistics of
the visual environment. We will later formulate this problem more explicitly, and
discuss both previous work in this area, and the specific contributions made by this
thesis work.

1.5 Outline of this thesis

The rest of this dissertation is structured as follows:

• In Ch. 2, I discuss the empirical observation that natural images seem to all
have the same autocorrelation function, and theoretical work that attempts to
explain this observation. At the same time, I will discuss some of my work in
this area, which reveals that natural image autocorrelation functions are not
affected by occlusion, the fact that objects can “hide” behind one another.

• In Ch. 3, I summarize prior work that attempts to explain the physiology of
the retinal ganglion cells and the lateral geniculate nucleus in terms of the
autocorrelation functions of natural images.

• Chapter 4 summarizes previous attempts to characterize the higher-order statis-
tics of natural images, beyond the autocorrelation, or 2-point functions. I will
observe in this chapter that this work may provide some deep insights into the
function of the primary visual cortex.

• The theoretical models presented in Ch. 4 lack the biophysical realism needed
to explain how the visual cortex might adapt to the statistical properties of
natural images. In Ch. 5, I will discuss a resolution to this problem that, in
essence, provides the first existence proof that visual cortex really could learn
a sparse code for natural images, despite the locality constraints implicit in the
cortical architecture.
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• The existing models discussed in Ch. 4 will all predict that sparseness (to be
defined later on) should increase during the adaptation process. In Ch. 6, I will
confront that prediction with the empirical observation that sparseness levels
in ferret visual cortex decrease as the animal matures. I will then provide a
potential resolution to this problem, involving homeostasis, and conclude that
our SAILnet model (presented in Ch. 5) might provide a parsimonious expla-
nation for both the receptive fields of the mature V1 neurons, as well as the
developmental trends leading to that state.

• Chapter 7 will summarize the main arguments in this thesis, and discuss some
directions for future research that are suggested by the work presented herein.

Chapters 2, 5, and 6, are adapted from separate stand-alone manuscripts that
have either been published, or submitted, at the time of the writing of this thesis.
Thus, some priority claims may be inadvertently repeated in this thesis.

12



Chapter 2

Low-level statistics of natural images

In order to understand how our visual systems reflect the statistics of natural visual
stimuli, we must first discuss those statistics. In this chapter, I will summarize both
empirical, and theoretical, work on the 2-point statistics of images of natural scenes.

2.1 Natural images are surprising statistically homo-
geneous

Natural images are surprisingly statistically uniform. For example, the autocorrelation
function, a measure of how much a pixel value at one location of an image can predict
pixel values at other locations, is virtually universal for natural images [Ruderman
and Bialek, 1994; Dong and Atick, 1995a; Field, 1987; Simoncelli and Olshausen,
2001; Torralba and Oliva, 2003] (Fig. 2.1). This is typically quantified by measuring
image power spectra (Fourier transform of the autocorrelation function: recall the
convolution theorem), which are well-described by scale-invariant power law functions
with power P and spatial frequency k related by P(k) ∝ k−α, with exponents α ≈ 2.
The exponents α vary slightly from image-to-image, and there are small differences in
average exponent α between terrestrial [Field, 1987; Ruderman and Bialek, 1994] and
aquatic [Balboa and Grzywacz, 2003] environments, and between natural and man-
made environments [Torralba and Oliva, 2003]. Intriguingly, even radiological images
like mammograms have power law power spectra [Heine and Velthuizen, 2002] (albeit
with smaller α values), despite the fact that the physics of image formation are very
different for radiological, and natural images. In natural images, formed by reflection
of light off of surfaces, objects tend to be opaque, and thus they occlude one another,
while in mammogram images, formed by the transmission of x-rays through breast
tissue, objects are more transmissive, and do not completely occlude one another.
Similar statements can be made about other types of radiological images.
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Chapter 2. Low-level statistics of natural images

Figure 2.1: Natural images have nearly identical power spectra. (A and B) Two
gray-scale natural images, taken by different photographers, in very different environments,
have very similar rotation-averaged power spectra (C). The line colors in panel C match
the borders in panels A and B.

2.2 “Dead leaf” models of the 2-point statistics of
natural images

Using the intuition that the environment is composed of distinct objects, Ruderman
studied a “dead leaves” model [Matheron, 1968; Bordenave et al., 2006] for natu-
ral scenes, in which images are created by sequentially placing opaque, potentially
overlapping circles of random brightness in random locations on a 2-dimensional
image plane [Ruderman, 1997] (Fig. 2.2). Using analytical calculations he demon-
strated that, so long as the diameters s of the circles follow a power law distribution
with probabilities p(s) ∝ s−(3+η), the images exhibit power law correlation functions,
C(q) ∝ q−η, where q is the separation between pixels, and power law power spectra,
P(k) ∝ k−(2−η). If the circle sizes are drawn from other distributions, Ruderman’s
analytic calculations suggest that the power spectra that could be made to differ from
a power law, contrary to the old notion [Carlson, 1978] that the 1/k2 power spec-
tra result from the mere presence of edges, each of which has a 1/k2 1-dimensional
power spectrum (cf. Balboa et al. [Balboa et al., 2001]). More recently, Balboa et
al. [Balboa et al., 2001] simulated the examples presented by Ruderman – Ruder-
man [Ruderman, 1997] did not report simulation results – including images with the
exponential distribution of object sizes that was claimed [Ruderman, 1997] to yield
non-power-law power spectra. They found that these images had nearly power law
power spectra, and subsequently re-iterated the claim that occlusion, and not object
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size distributions, are the cause of power law power spectra in natural images.
This “edges vs. size distributions” debate was subsequently resolved when Hsiao

and Milane demonstrated, via numerical simulations, that dead leaf models with
partially transparent objects (and thus only partial occlusion) whose sizes follow a
power law distribution yield power law power spectra, and that dead leaf models
with opaque objects from other size distributions can have non power-law power
spectra [Hsiao and Millane, 2005]. In other words, occlusion is neither necessary, nor
sufficient, to yield power law image power spectra. In that same paper, Hsiao and
Milane computed the power spectra of a simplified ensemble of images (simpler than
the images with partially occluding leaves that they simulated), formed by summing
the intensities of different randomly placed disks. The linearity of this model makes
it relatively straightforward to compute the Fourier transform of the model images,
and thus to estimate the power spectra.

2.3 How does occlusion affect the 2-point statistics of
natural images?

Thus, to date, the 2-point statistics of dead leaf image models have been analytically
calculated for both fully opaque leaves (by Ruderman), and for fully transmissive
leaves (the linear model of Hsiao and Milane). What remains is to solve for the 2-point
function of images with partial occlusion, which will deepen our understanding of how
opacity and image statistics inter-relate along this continuum of object properties.

Thusly motivated, we studied a generalized dead leaves model, in which the leaves
have variable transparency. While general feature probabilities have been solved ex-
actly for the fully opaque dead leaves model [Pitkow and Meister, 2012], our transpar-
ent generalization requires other methods and has not previously been systematically
explored. We show herein that, so long as leaf sizes follow a power-law distribution,
transparency results in an overall multiplicative factor in the 2-point function but does
not change its functional (power-law) form. For other size distributions, transparency
does change the form of the autocorrelation function, suggesting that power-law size
distributions unify the observed power spectra of natural and radiological images.

I begin by analytically computing the 2-point functions of images in the “trans-
missive dead leaf” environment. For image pixels values I(~x), the 2-point function
is given by C(~x, ~x′) = 〈I(~x)I(~x′)〉 = C(|~x − ~x′|), where the average denoted by the
triangular brackets is taken over different pairs of image points in the ensemble of
images, and the second step stems from the fact that, since the model world is in-
variant under both translations and rotations, the 2-point function depends only on
the distance |~x− ~x′| = q between sample points.

The image is formed by taking a circle whose diameter s is drawn from some
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Figure 2.2: Example opaque and transmissive dead leaf images. Example images
from the dead leaf model, with circle diameters drawn from the distribution p(s) ∝ s−3.2

for s > s0 = 1 pixel, and circle brightnesses drawn from a uniform distribution over the
range [−1, 1]. When the circles are partially transparent, but all other parameters are the
same, the model images are visibly different. In the case of the transmissive ensembles
(B,C,D), leaves behind the frontmost one are visible. The converse is true of the opaque
dead leaf images (A), where only the frontmost surface is visible. As the leaves become
more transmissive (a → 1), the images become more like pink Gaussian noise, as one
might expect from the central limit theorem..

distribution, with brightness value b, and transparency a, and placing it randomly
on a surface of diameter L. The brightnesses b will be drawn from a zero-mean
distribution, and the transparencies a ∈ [0, 1] can also be random. A value a = 1
specifies a fully transparent (invisible) circle, while a value of a = 0 specifies a fully
opaque circle, as in Ruderman’s model. After the new circle is added, The resultant
pixel value If (~x) at a point ~x that falls within the circle is

If (~x) = (1− a)b+ aIi(~x), (2.1)
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where Ii and If refer to the pixel values before and after the circle is added,
respectively. Those pixels not lying under the circle are unaffected by its addition.
This process is continued ad infinitum to create model images, examples of which are
shown in Fig. 2.2 (different panels show images created by circles of different opacity
values a). It is trivial to show that the mean pixel value in these image ensembles is
zero.

I will compute 〈I(~x)2〉 and C(q) recursively by first noting that adding another
leaf to an image creates a new image from the transmissive dead leaf ensemble, and
thus the (average) statistical properties must remain unchanged by this transforma-
tion [Ruderman, 1997].

Using Eq. 2.1, the pixel variance is computed to be

〈
I2(~x)

〉
= (1− Pin)

〈
I2(~x)

〉
+ Pin

〈
(aI(~x) + (1− a)b)2

〉
=⇒

〈
I2(~x)

〉
=
〈b2〉 〈(1− a)2〉

1− 〈a2〉
, (2.2)

where Pin is the probability that the point in question falls within the newly added
circle. The quantity Pin, and thus the distribution of circle sizes, does not affect the
pixel variance. It will however, affect the spatial properties of the image, including
C(q).

To compute C(q), first consider how the pixel values of a pair of points, with
separation q, are affected by the addition of a new leaf to the image. After adding the
new leaf, either one, both, or neither, of the two sample points will lie under the leaf,
resulting in three different possible modifications to the pixel values (Eq. 2.1). These
outcomes occur with probabilities P1(q), P2(q), or P0(q), respectively, which I will
later compute. Equating the 2-point functions both before, and after, the addition of
a new leaf to the image,

C(q) = P0(q)C(q) + P1(q) 〈[aI(~x) + (1− a)b] I(~x′)〉
+ P2(q) 〈[aI(~x) + (1− a)b] [aI(~x′) + (1− a)b]〉 . (2.3)

Recalling the definition of the autocorrelation function and the normalization
P0(q) + P1(q) + P2(q) = 1, a bit of algebra yields

C(q) =
〈b2〉 〈(1− a)2〉P2(q)

P1(q) 〈1− a〉+ P2(q) 〈1− a2〉
. (2.4)

The quantities 〈b2〉, 〈a2〉, and 〈a〉 depend on the distributions of circle brightnesses
and opacities.
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I will now compute the functions P1(q) and P2(q), thus finishing the calculation
of C(q). In order to calculate P1(q), I begin by defining P ? = 〈s2〉 /L2 to be the
probability that any given point in the image falls within a newly-deposited circle.
The probability P1(q) that either point, but not both, falls within the circle is thus
P1(q) = 2 (P ? − P2(q)), where the factor of 2 comes in because there are two such
points to consider.

In order to determine the probability P2(q), note that, for a circle of diameter s,
given that one particular point ~x is within the circle (which occurs with probability
s2/L2), the probability that another point, a distance q away, is also within the circle,

is given by g(q/s ∈ [0, 1]) = 2
π

[
cos−1(q/s)− (q/s)

√
1− (q/s)2

]
[Ruderman, 1997],

and thus

P2(q) =

∫ ∞
0

s2

L2
g(q/s)p(s)ds. (2.5)

For a power law size distribution p(s) = (A/s0)(s/s0)
−α (for power α > 3 and

normalizing constant A, and above the small-size cutoff s0), the change of variables
u = s/q in the above integral yields

P2(q) = A
(s0
L

)2( q

s0

)−(α−3) ∫ ∞
1

g(1/u)u2−αdu. (2.6)

Define the integral to be B(α). For pixel separations much larger than the small-

size cutoff of the leaf diameter distribution, q � s0 (in which case P ? = A
α−3

(
s0
L

)2 �
P2(q)), Eqs. 2.4 and 2.6 then yield

C(q) =
B(α) (α− 3) 〈b2〉 〈(1− a)2〉

2 〈1− a〉

(
q

s0

)−(α−3)
, (2.7)

resulting in an image power spectrum P(k) ∝ 〈b
2〉〈(1−a)2〉
〈1−a〉 k−(5−α), in which the

opacity affects the power spectrum only as a multiplicative prefactor. In the case
that a = 0 for all circles (opaque limit), this result is equal to that of Ruderman, as it
must be. Also note that, as one might expect, the 2-point function does not depend
on the size L of the image surface.

To confirm my analytical calculations, I simulated 500-frame ensembles of 256×
256 pixel images, using the procedure described in Eq. 2.1: circles of random size
(following a power law distribution p(s) ∝ s−3.2 above the cutoff of s0 = 1 pixel),
brightness, and position, were iteratively placed on the image frame to build up the
images. For each frame, 106 circles were deposited: this number was chosen to be
several times larger than the number needed to cover the surface of the image with a
stack of leaves several tens deep.
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To avoid “edge effects”, the circle centers were allowed to fall anywhere up to
256 + s/2 away from the center of the image frame, where s is the circle diameter
in pixels. Since the maximum circle size in our simulation was 108 pixels, this must
be done carefully in order for the simulation to run in a reasonable amount of time.
The maximum circle size was chosen to be so large because prior work [Lee et al.,
2001] shows that, when simulating dead leaf images, the functional form of the mea-
sured autocorrelation function depends on this maximum size, and approaches the
analytically calculated size only in the smax →∞ limit. Briefly, since the power-law
distribution has such a heavy tail, it contains a non-negligible (but small) number of
very large leaves, which are responsible for much of the long-range correlations in the
images. Thus, one must be careful to sample the tail of this distribution in order to
observe the “correct” correlation function.

I then measured the difference functions D(q) =
〈
|I(~x)− I(~x′)|2

〉
= 2 〈I(~x)2〉 −

2C(q) for each image ensemble. The difference function is clearly related to the
autocorrelation function C(q), but is easier to measure as it is unaffected by the
mean values of the individual images [Ruderman, 1997]. I fit the measured difference
functions to power law functions of the form D(q) = η × qµ + ν, as is suggested by
our analytical calculations (above). The best-fit parameters (η, µ, ν) for the opaque
image ensemble (a=0) were (−0.48±0.01,−0.24±0.04, 0.69±0.03), while the a=0.25
ensemble yielded (η, µ, ν) = (−0.32± 0.01,−0.23± 0.03, 0.41± 0.02), and the a=0.5
and a=0.75 ensembles yielded (−0.191±0.004,−0.22±0.03, 0.23±0.01) and (−0.086±
0.002,−0.21± 0.02, 0.098± 0.005), respectively. These values are in reasonably good
agreement with the analytical caculations (above) that suggest µ = −0.2 for all
image ensembles, and ν = {0.67, 0.4, 0.22, 0.095} for the a = {0, 0.25, 0.5, 0.75} image
ensembles, respectively.

The correlation functions displayed in Fig. 2.3 are the measured difference func-
tions subtracted from the constants ν measured in the fit: C(q) = [ν −D(q)]/2. As
suggested by my analytical calculation, these correlation functions are power-law func-
tions of distance (appearing linear on the log-log plot), and differ by a multiplicative
constant. Similarly, the power spectra of the image ensembles, shown in Fig. 2.3, dif-
fer only by a multiplicative constant, and are power-law functions of spatial frequency.
Above approximately 30 cycles/image, a kink can be seen in the power spectra. This
occurs because the higher spatial frequencies correspond to smaller length scales, on
which our q � s0 approximation fails, and deviations from power-law behavior are
thus anticipated.

To demonstrate that the leaf opacity can affect the functional form of the power
spectrum, I repeated the above calculations with size distribution p(s) = δ(s − s?),
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Figure 2.3: The 2-point statistics of the dead leaf image ensembes differ only
by a multiplicative constant for power-law object size distributions. (A) The
autocorrelation functions for the ensembles of dead leaf images shown in Fig. 2.2 are the
same up to a multiplicative constant. The 2-point functions are well-described by power
law functions of distance, with power ∼ −0.2, in good agreement with the analytical
calculation (see text for calculation and simulation analysis details). Similarly, the power
spectra (B) of the different image ensembles are roughly power-law functions (appearing
linear on a log-log plot), and are the same up to a multiplicative constant. At higher
spatial frequencies, corresponding to shorter length scales, the q � s0 approximation
becomes worse, and slight deviations from power-law behavior are apparent in the power
spectra.

in which case the correlation function is given by

Cδ(q) =
〈b2〉

〈
(1− a)2

〉
g(q/s?)

2 〈1− a〉 −
〈
(1 + a)2

〉
g(q/s?)

, (2.8)

which depends non-trivially on a: for q > s?, g(q/s?) = 0, and the correlation
function vanishes, which means that the large-q limit in which Eq. 2.7 was derived is
irrelevant for delta-function size distributions.

In Fig. 2.4, I demonstrate that the 2-point function is affected substantially by leaf
opacity, for delta-function leaf size distributions. The procedures used to generate the
data shown in Fig. 2.4 were very similar to those (discussed above) for the power-law
object size distribution.

To summarize, for the special case of power-law object size distributions, object
opacity does not affect the form of either the 2-point function or the power spectrum
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Figure 2.4: For delta-function object size distributions, opaque and transmissive
dead leaf images yield substantially different autocorrelation functions and power
spectra. (A,B) Sample images in which the leaves are all the same size (s? = 25
pixels), from the opaque (a=0, A) and transmissive (a=0.25, B) image ensembles. The
autocorrelation functions of these image ensembles are shown in panel C. Their power
spectra (D) differ non-trivially. To highlight this fact, we plot the ratio between the power
spectra and note that it is not constant. The ripples in the power spectra are indicative
of the fixed length scale in the images: they occur at multiples of the 256/25 ≈ 10
cycles/img fundamental frequency. The ripples in the ratio of the power spectra indicate
that the modulation depth depends on the leaf opacity.

of images: it is manifest only by a multiplicative constant in the power-law func-
tions. For other object size distributions, this is not necessarily the case. Occlusion
is important for natural image formation, but it does not change the form of the
power spectrum. Since images formed by opaque leaves that are all the same size
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have oscillatory, non-power-law, power spectra (Fig. 2.4), and transmissive leaves can
yield power law power spectra (Fig. 2.3), occlusion is likely not responsible for scale
invariance of images. The universality of power law power spectra in both occlusive
imaging environments, like natural photographic images, and transmissive ones, like
mammography, is likely due to power-law object size distributions in both settings.

The work presented in this section was done in collaboration with David Pfau.
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Chapter 3

Using the 2-point functions of natural
images to understand the peripheral

visual system

Natural images contain highly redundant information. Consider, for example, the
images shown in Fig. 2.1. In those images, nearby pixels tend to be similar – bright
pixels tend to be next to other bright pixels, and dark pixels tend to be next to other
dark pixels – the brightness field is highly correlated. As I demonstrated in Ch. 2,
the autocorrelation function that describes this phenomenon is somewhat universal
for natural images, and can be modeled using collages of randomly placed objects.
Indeed, natural movies are also highly redundant in the time domain [Dong and Atick,
1995a], a fact to which I will return later in this chapter.

3.1 Redundancy is information theoretically inefficient

To understand the impact of redundancy on coding efficiency, we must first summarize
some basic results from information theory, originally due to [Shannon, 1948]. For a
modern, pedagogical, discussion of information theory, interested readers should read
the excellent book by Cover and Thomas [Cover and Thomas, 1991].

Consider a communication channel along which we send messages x, with corre-
sponding probabilities p(x). The entropy of this message distribution, H[x], is given
by

H[x] = −
∑
i

p(xi) log2 (p(xi)) , (3.1)

and is measured in units of binary digits, or “bits”. The entropy is a measure of
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how informative a given message from this distribution is expected to be. In the case
that only one message ever occurs, p(xi) = δi1, the distribution contains no infor-
mation since one knows, before the message is received, exactly what it will contain.
A uniform distribution over messages results in each message being maximally infor-
mative and, in this case, the entropy of the distribution is just the logarithm of the
number of possible messages, similar to how, in statistical physics, the entropy of a
given macro state is the logarithm of the number of different microstates that give
rise to the same macroscopic observables.

In the case of information theory, one can show that the entropy described in
Eq. 3.1 gives the minimum number of binary symbols needed to recode the mes-
sages [Cover and Thomas, 1991] or, similarly, the minimum capacity a noiseless digital
channel requires in order to send the messages.

When two messages are sent simultaneously (say, the outputs x and y of neigh-
boring retinal ganglion cells), the joint entropy is simply

H[x,y] = −
∑
i,j

p(xi,yj) log2

(
p(xi,yj)

)
, (3.2)

where p(xi,yj) is the joint probability distribution over the messages x and y.
With a small amount of algebra, it is easy to show that [Cover and Thomas, 1991]

H[x,y] = H[x] +H[y]−
∑
i,j

p(xi,yj) log2

(
p(xi,yj)

p(xi)p(yj
)

)
, (3.3)

where the last term is called the mutual information between variables x and y,

I [x; y] =
∑
i,j

p(xi,yj) log2

(
p(xi,yj)

p(xi)p(yj)

)
. (3.4)

I [x; y] describes the extent to which knowledge of the value of one random vari-
able, say x can provide information about another one, say y. When the two variables
are statistically independent, p(xi,yj) = p(xi)p(yj), and the logarithm in Eq. 3.4 is
zero.

From this discussion, it is clear that, in order for the retinal ganglion cell (RGC)
outputs to collectively be maximally informative, they should be statistically inde-
pendent, so that their mutual information is zero, and thus the entropy of their joint
message distribution is maximized. This can be intuitively understood by noting
that, if there is dependency between the RGC outputs, then the output of cell A,
in addition to specifying the state of that cell, also specifies (at least partially) the
state of cell B. But, since cell B is sending its own output as well, that information
is already present, and thus one could send the message more cheaply by removing
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the shared part of the message. Of course, if the communication channel is noisy, the
redundancy can be desirable, as it provides the possibility for error correction in the
received message [Mackay, 2003]. The notion that sensory systems should be infor-
mation theoretically efficient is an old one, dating back to at least the 1960’s [Barlow,
1961], and has had a significant impact on the field.

3.2 Whitening in the spatial domain: a model for RGC
filtering?

Retinal ganglion cells tile the retina, with each RGC being loosely analogous to a
pixel on a CCD chip, although the RGCs are in a hexagonal closest-packing config-
uration [Wassle et al., 1981], and not arrayed on a square lattice like CCD pixels.
Since natural images contain significant spatial correlations (Ch. 2), this means that
nearby RGCs get similar input from the photoreceptors. From the discussion in the
beginning of this chapter, recall that efficient coding arguments suggest independence
of RGC activity.

To make progress on connecting efficient coding and RGC physiology, I will relax
the requirements slightly, and focus on correlations rather than statistical depen-
dency. There are several reasons do to this: experimentally, it requires much less
data to measure pair-wise correlations than the 3-pt (and higher) functions; in the
case of 2-point statistics, the convolution theorem provides a very nice connection be-
tween linear filter properties and image power spectra; in the case of jointly Gaussian
variables (although RGC activity is not jointly Gaussian [Schneidman et al., 2006]),
removing correlations is equivalent to introducing full independence.

If one assumes that RGCs are linear filters, such that their outputs (for which I
will use firing rates r(~x) – where ~x is the RGCs location – as a proxy) are given by the
convolution between a filter Q(~x − ~x′), and the input image with pixel values I(~x′),
r(~x) =

∫
d~x′Q(~x− ~x′)I(~x′), and that the RGCs all have the same filter, the problem

can be reduced to asking: which filter Q(~x−~x′), when convolved with natural images
will yield spatially uncorrelated outputs [Atick and Redlich, 1992]?

Atick and Redlich provide more rigorous derivations, but one can quickly solve this
problem by recalling that an uncorrelated signal has a delta function autocorrelation
function, the Fourier transform of which is a constant. Recalling the convolution
theorem, which states that the Fourier transform of a convolution is the product of the
Fourier transforms, and that the amplitude spectra (modulus of Fourier transform) of
natural images are 1/k for spatial frequency k, it becomes clear that the decorrelating
filter should have an amplitude spectrum Q̃(k) ∝ k [Atick and Redlich, 1992].

In the presence of noise, this filter is not so useful, because natural images have
very little power at high spatial frequencies (recall their k−2 power spectra), but any
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additive noise, like shot noise, will tend to be spatially uncorrelated, and thus persists
up to arbitrarily high spatial frequency: white noise has a frequency-independent
power spectrum, hence the reason it is called “white”. Thus, above some threshold
spatial frequency, there is more noise power than signal power, and continuing to
convolve the signal with a k filter past this frequency amplifies the noise to potentially
disastrous levels. One might thus predict that the optimal RGC filter would be linear
in spatial frequency for small k, followed by a roll-off (low pass filtering) above some
threshold spatial frequency. Indeed, physiologically measured retinal receptive fields
show precisely this trend [Atick and Redlich, 1992].

Thus, as far as linear filtering is concerned, decorrelation (whitening), with noise-
reducing low-pass filtering, seems to provide a decent account of RGC physiology.
Direct measurements show that the correlations between RGC spike trains are small,
with the distribution of Pearson’s linear correlation coefficients being sharply peaked
near zero, and having an RMS value of much less than 0.1, although even these small
correlations can have significant impacts on the collective network activity [Schneid-
man et al., 2006].

Of course, one must not believe too strongly in the linear filtering arguments, since
neuronal outputs are significantly non-linear functions of their inputs. Canonically,
one considers a neurons as a linear-nonlinear system, in which a linear filter acts on the
inputs to the cell – like, say, the stimulus convolved with a receptive field – , and the
cell output is a pointwise nonlinear function of that convolution [Pillow et al., 2008;
Carandini et al., 1997]. Interestingly, very recent work has shown that the nonlinear
transfer properties of RGCs, rather than their linear filters, are primarily responsible
for decorrelating their activities [Pitkow and Meister, 2012].

Regardless of the cause of the decorrelation, later in this thesis, I will use whitened
natural images as inputs to a model of visual cortex, as is standard practice in the
field [Simoncelli and Olshausen, 2001].

3.3 Lateral geniculate nucleus outputs are white in the
time domain

While RGCs appear to perform spatial decorrelation of natural images, the tem-
poral correlations in natural movies provide another, potentially significant, source
of redundancy and / or inefficiency. Much like in the spatial domain (Ch. 2), nat-
ural movies have f−2 power spectra in the time domain, where f is the temporal
frequency [Dong and Atick, 1995a]. Thus, linear filtering arguments similar to those
used in the preceding section suggest that, somewhere in the peripheral visual system,
there exist neurons whose response functions have f 2 power spectra.

To address this question, Yang Dan and colleagues recorded spike trains from the
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lateral geniculate nucleus (LGN – the structure that receives visual input from the
eyes via the optic nerve, and relays that information to the primary visual cortex,
V1) of cats viewing various stimuli.

In response to natural movies (Casablanca was used as a stimulus), the LGN
neurons’ spike trains had flat power spectra, thus they were whitening the f−2 in-
put [Dan et al., 1996]. As a control, Dan et al. repeated their experiment with white
noise stimuli, and found that the power spectra of the LGN responses were ∼ f 2. In
other words, LGN activity is consistent with applying a filter with an f amplitude
spectrum (and thus f 2 power spectrum) to the input stimulus. When that stimulus
is a natural movie with 1/f amplitude spectrum, the output is white, and when the
input is white (with constant power spectrum), the output power spectrum varies as
f 2.

Of course, it is not clear from this experiment alone whether the f filter is applied
at the LGN, at the retina, or somehow through the concatenation of these two trans-
formations. Other work shows that the LGN filters (spike triggered average temporal
response) are similar to what one expects, if the LGN is performing the temporal
whitening [Dong and Atick, 1995b].
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Chapter 4

Characterizing the higher-order
statistics of natural images

As I have discussed in the Chapters 2 and 3, natural images have nearly universal
autocorrelation functions, and the peripheral stages of visual processing largely re-
move those correlations, resulting in “whitened” natural images (so-called because
they have equal power at all frequencies, much like white light), an example of which
is shown in Fig. 4.1. Compared to raw images, like those in Fig. 2.1, edges are much
more apparent in the whitened image, as a result of the increased power at high spa-
tial frequencies. That the whitened image contains significant structure (indeed, the
semantic content of the image is still obvious, even after whitening) underscores the
existence of significant higher-order correlations (beyond the 2-point function). In this
chapter, I will summarize attempts to understand this higher-order structure, which
will lead to interesting insights about the possible optimization principles underlying
the physiology of visual cortex.

4.1 Independent Component Analysis

To build up a model for natural image statistics, imagine taking whitened images,
and searching for a basis in which each dimension is statistically independent. Such
an analysis would provide a model for the probability distribution function natural
images, and the bases (features) so-found would inform us about the composition of
natural images. This analysis is called Independent Component Analysis (ICA) [Bell
and Sejnowski, 1997], and has had a profound effect on the computer vision commu-
nity.

To perform ICA, one proposes that the image, which is reshaped into a vector ~I,
the elements of which represent the pixel values, is formed from a linear mixture of
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Figure 4.1: A whitened natural image. Despite the absence of 2-point correlations,
there is still much obvious structure in the image, suggesting a rich higher-order correlation
function (beyond 2-point).

sources ~A, via the mixing matrix Q: ~I = Q~A. One then proposes a prior distribution
over the source weights ~A, and modifies the mixing matrix Q until the sources follow
that prior distribution, which is typically a factorial distribution, p( ~A) =

∏
i p(Ai),

such that the sources are independent. With reference to the discussion on redun-
dancy and information theory in Ch. 3, one can see that, since the sources A are
independent, one could form an efficient code for natural images by finding the source
weights for each image, and transmitting those instead of the raw pixel values (which
are somewhat redundant, even after the image has been whitened). This observation
seeks to emphasize the fact that the most efficient way to encode a given class of
signals depends strongly on the statistical properties of those signals and thus, by
adapting to the stimulus statistics, sensory systems can improve their efficiency.

In the simplest form of ICA, the matrix Q is square and invertible, so the source
weights can be easily determined as ~A = Q−1~I. It is then relatively straightforward
to write down the image probability in terms of the prior over source weights, and to
perform gradient ascent of the entries in the matrix Q on the log-likelihood function
such that, on average, this probability is maximized. For the (very common) choice of

a Laplace prior, p( ~A) =
∏

i e
−|Ai|, this gradient ascent calculation yields the learning
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rule

∆Q ∝
〈

(QT )−1sign( ~A) ~AT − (QT )−1
〉
. (4.1)

The specific details of Eq. 4.1 are not particularly important for this thesis, al-
though I will later spend a lot of time and attention on other learning rules. Rather,
this equation serves to emphasize the algorithm by which one performs ICA. First,
one randomly initializes the matrix Q, so as to be agnostic to the structure of the in-
dependent components that are found. Then, one presents a set of images, the source
weights for which are computed as ~A = Q−1~I. The matrix Q is then updated using
the rule given in Eq. 4.1, with the constant of proportionality (called the “learning
rate”) being chosen such that the algorithm converges as quickly as possible. This
process is then iterated until the matrix Q converges. Since the learning rule was de-
rived as gradient ascent on the log-likelihood function, upon convergence, the matrix
Q will maximize the likelihood of the image patches, under the prior distribution we
have chosen. Of course, gradient ascent is prone to finding local maxima, and so there
is no guarantee that this algorithm will find the global maximum for the matrix Q.

If the learning rate is chosen to be too large, the entries of Q will keep “bouncing
around”, taking large steps about the optimum, and will never converge. Conversely,
if the learning rate is too low, the algorithm will be very slow to converge. To get
around this, a common strategy is to start out with a large learning rate, and to
gradually reduce it as the algorithm nears convergence.

Figure 4.2 shows an example of ICA basis functions trained on 16 × 16 pixel
patches drawn randomly from whitened natural images, and trained to optimize a
Laplace prior. Each of these basis functions corresponds to a column of the matrix
Q, reshaped into a square image patch. One of the basis functions corresponds to the
DC brightness level of the image patch, while the remainder are localized and oriented
edge filters. A cursory comparison with the macaque V1 receptive fields in Fig. 1.5
shows some similarities, although the two feature sets are clearly not in quantitative
agreement.

4.2 Sparse Coding

While ICA, as presented in the previous section, assumes that the image is a noiseless
linear mixture of sources, and that number of sources is equal to the number of
pixels, both of these assumptions can be relaxed, yielding the sparse coding analysis
of [Olshausen and Field, 1996]. I will devote considerable attention to this, and
related, previous works, because they form important background material for the
novel work presented in Chapters 5 and 6.

In a sparse coding model, one recodes the image ~I in terms of the weights of a set
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Figure 4.2: ICA basis functions for whitened natural images. Each square in
the grid shows one ICA basis function for 16× 16 pixel whitened natural image patches.

of basis functions (much like ICA) and postulates that the weights Ai of those basis
functions in response to each image, and the basis functions themselves Qij, minimize
the following cost function [Olshausen and Field, 1996]:

E =
1

2σ2

∑
j

|Ij −
∑
i

AiQij|2 +
∑
i

C(Ai), (4.2)

where the first term is the RMS deviation between the image model (formed
by multiplying each basis function by its weight and summing over all bases), the
function C(·) is the sparseness penalty function, and σ is a constant that determines
the relative importance of the two terms. Commonly the sparseness penalty function
is the absolute value of the weights, C(·) = | · |, in which case the algorithm seeks to
simultaneously minimize the error in the image model, and the so-called L1 norm of
the weights (the L1 norm is simply the sum over the absolute values), although other
penalty functions are possible.

Unlike ICA, the matrix Q need not be square, so the sparse code can be either
undercomplete (having fewer bases than pixels), critically sampled, or overcomplete,
in which case there are more bases than pixels.

Algorithmically, sparse coding works much like ICA: one starts with randomized
bases, then determines the weights of those bases in response to whitened natural im-
ages. The bases are then updated to decrease the value of the cost function (gradient
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descent).
Whereas in ICA, the source weights could be obtained by matrix inversion, the

same is not true in sparse coding (SC) analyses. In the original paper on sparse
coding, Olshausen and Field obtained the weights by gradient descent on their cost
function [Olshausen and Field, 1996]. The gradient of the cost function with respect
to the weights is

∂E

∂Ai
= −2

(
1

2σ2

)∑
j

(
Ij −

∑
k

AikQkj

)
Qij + C ′(Ai), (4.3)

and thus gradient descent yields an update rule of

Ai(t+ 1) = Ai(t) + η

[
1

2σ2

∑
j

IjQij −
1

2σ2

∑
j,k

Ak(t)QkjQij − C ′(Ai(t))

]
, (4.4)

where η is a small positive constant that determines the rate at which the weights
change. To perform the inference – determine the weights corresponding to a given
image – the weights Ai are initialized at zero, and the updates defined in Eq.4.4
are performed iteratively until convergence is achieved. More recently, Rozell and
colleagues showed that this inference step could be implemented by a network of
interconnected model neurons [Rozell et al., 2008].

As in ICA, once the weights are known for a set of images, the bases are updated,
using gradient descent on the cost function

∂E

∂Qij

= −2

(
1

2σ2

)
Ai

(
Ij −

∑
k

AkQkj

)

=⇒ Qij → Qij + γAi

(
Ij −

∑
k

AkQkj

)
, (4.5)

where γ is a small positive constant. This interleaving of inference and learning is
then repeated until the bases converge. We note that, in both sparse coding, and ICA,
the basis functions are forced to have unit vector length, such that

∑
j Q

2
ij = 1 ∀i. This

is implemented by normalizing the bases after each update. Without this requirement,
the cost function (Eq. 4.2) could be trivially minimized by having large magnitudes
on the bases, resulting in very small weights Ai.

The connection between ICA and SC can be understood by noting that the cost
function in Eq. 4.2 can be interpreted as a negative-log-likelihood [Olshausen and
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Field, 1997], for which the corresponding likelihood function is

p(~I) ∝ exp

[
−
∑

j |Ij −
∑

iAiQij|2

2σ2

]∏
i

exp(−C(Ai)). (4.6)

In other words, sparse coding assumes that the true image is Gaussian distributed
with respect to the image model

∑
iAiQij, and that the statistical prior on the weights

is factorial.
A common choice for the sparse cost function is the so-called L1 norm of the

weights, in which case C(Ai) = |Ai|. In the original sparse coding paper, a slightly
undercomplete (with respect to the number of pixels) representation was used, and,
after training on natural images, both the L1 sparseness penalty, and the use of
a Cauchy prior resulted in basis functions that look like localized, oriented Gabor
wavelets (somewhat like the ICA bases in Fig. 4.2). It was argued at the time [Ol-
shausen and Field, 1997] that the agreement between these basis functions, and the
receptive fields (RFs) of visual cortical neurons, might indicate that V1 forms a sparse
code for natural images, although subsequent work [Ringach, 2002] showed that there
were some discrepancies between the RF shapes and the sparse coded basis functions.
For example, with respect to the macaque V1 RFs in Fig. 1.5, the sparse coding
model [Olshausen and Field, 1996] failed to display the small unoriented “blobs”.

More recently, Rehn and Sommer showed that a highly overcomplete sparse cod-
ing model with 3 times more bases than image pixels, which uses an L0 sparseness
penalty, could yield quantitative agreement between the basis function shapes, and
the physiologically recorded V1 receptive fields [Rehn and Sommer, 2007]. The L0

norm of a vector is simply the number of non-zero entries in that vector, and thus
the model of Rehn and Sommer seeks to minimize the number of active units.

The above discussion begs the question: is it the correct choice of sparseness
penalty (L0 vs L1 for example), or the overcompleteness level, that dictates whether
a sparse coding algorithm will yield the full diversity of RF shapes seen in visual
cortex? Given that massively overcomplete SC models that minimize the L1 norm
can also yield the full set of RF shapes [Olshausen et al., 2009], I suspect that it is the
overcompleteness, and not the specific choice of cost function, that is more important.

Intriguingly, theoretical work in statistics indicates that, if the image was truly
L0 sparse (meaning that, of a large dictionary of basis functions, the image could be
reconstructed exactly by taking a weighted sum of no more than k of those bases, for
some integer k), then finding the L1-minimizing set of weights would give the same
answer as seeking out the L0-minimizing set of weights [Donoho, 2004]. Since the
rule for updating the basis functions (Eq. 4.5) depends only on the weights, pixel
values, and basis functions, and not explicitly on the cost function itself, this means
that, in the case that the images are really L0 sparse, L1 and L0 sparseness penalty
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functions would be equivalent with regards to sparse coding models. However, the
reader should note that this condition (k sparseness) is not necessarily satisfied by
the image coding problem.

4.3 Might primary visual cortex use a sparse code for
natural images?

As I have discussed in the above section, a sufficiently overcomplete sparse coding
model learns, when trained on natural images, the same set of features that are
displayed in the receptive fields of visual cortical neurons. This has prompted some
to suggest that V1 might form an overcomplete, sparse representation [Olshausen and
Field, 1997].

Aside from the receptive field shapes themselves, the specific sparse coding mod-
els(s) discussed above implies several testable predictions:

• V1 must be overcomplete with respect to the RGCs;

• cortical neurons should have sparse activity levels;

• cortical neurons should be statistically independent;

• one should be able to linearly decode the cortical activity, to recover the stimuli.

I note for sake of completeness that these last two predictions are not strictly
necessary for all sparse coding models. Indeed, one can create sparse coding models
in which the prior on neuronal activations is not factorial (thus not being statistically
independent), or in which the “representation” is non-linear [Karklin and Simoncelli,
2011].

In the remainder of section, I will address these predictions one-by-one, and come
to the conclusion that V1 appears to largely satisfy the above conditions.

4.3.1 Is V1 overcomplete with respect to the retinal ganglion
cells?

The human primary visual cortex contains around 108 neurons [Leuba and Kraftsik,
1994; Klekamp et al., 1991]. In contrast, there are around 106 retinal ganglion cells
whose axonal projections form the human optic nerve [Curcio and Allen, 1990]. Thus,
human V1 is ∼ 100 times overcomplete with respect to its (retinal) input. Not all
of the V1 neurons are expected to be involved in forming the sparse code described
above. For example, V1 contains neurons that are tuned to retinal disparities, and
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are thus involved in estimating depth, interneurons that are not suspected to be
involved in this coding, and complex cells that respond to specific image features in
a translation-invariant manner. Nevertheless, V1 is sufficiently overcomplete that a
subset of its neurons (the so-called “simple cells”) could be involved in the formation
of such a code.

As a counterargument, recall that visual cortical neurons respond different to re-
peated presentations of the same stimulus. It has been argued that, in order to achieve
a reliable rate code, one must average over 50 − 100 different neurons [Shadlen and
Newsome, 1994]. If Shadlen and Newsome are correct, then the observed overcom-
pleteness might not be related to sparse coding, but would rather exist to introduce
enough redundancy in visual cortex to allow it to operate reliably in the presence of
noise, although other visual cortical studies [Mainen and Sejnowski, 1995] indicate
that V1 neurons might be more reliable (less noisy) than they are often given credit
for.

4.3.2 Do (visual) cortical neurons have sparse activity levels?

Measurements of the firing rates of V1 neurons in response to videos of natural scenes
show that those rates are low, and that the firing rate distributions are sharply peaked
near zero [Baddeley et al., 1997], and follow a roughly exponential distribution, similar
to what one finds in sparse coding models that minimize the L1 sparseness cost
function. Similarly, cell-attached recordings in auditory cortex show highly sparse
levels of activity [Hromádka et al., 2008], with the distribution of neuronal firing rates
following a roughly lognormal function. The comparison between auditory and visual
cortices might at first seem a bit odd, but it is generally assumed (or at least hoped)
that, on some level, “cortex is cortex”, and one can generalize between different
cortical areas.

Conversely, other experimenters [Tolhurst et al., 2009] have observed non-sparse
(dense) neuronal activity in visual cortex, although the boundary between “sparse”
and “dense” activity is open to interpretation and thus it is unclear how sparse the
activity must be in order to confirm the sparse coding hypothesis [Zylberberg et al.,
2011].

Interestingly, however, the relative level of sparseness of cortical responses to
natural images increases when a larger fraction of the visual field is covered by the
stimulus [Vinje and Gallant, 2002; Vinje and Gallant, 2000; Haider et al., 2010], as a
result of inhibitory interneuronal connections [Haider et al., 2010].

With respect to direct measures of sparseness, then, I conclude that there is some
ambiguity, but the balance of evidence does not rule out a sparse code.

Intriguingly, sparseness levels in ferret V1 appear to decrease during maturation:
as the animal gains more visual experience, its visual cortical activity becomes less
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sparse [Berkes et al., 2009]. This is counter to what one might expect from the sparse
coding hypothesis, and I will address this observation in detail in Ch. 6.

4.3.3 Do visual cortical neurons have statistically independent
activities?

As I have alluded to previously, it is very difficult to experimentally assess statistical
independence, because a very large amount of data is required in order to fully sample
the joint probability distribution function, which is needed in order to make that
claim. More readily accessible are the pair-wise correlations, which must be zero if
the neurons are independent (although the absence of correlations is not sufficient to
prove independence), and which can be measured with a relatively modest amount
of data. Recent experimental work [Ecker et al., 2010; Renart et al., 2010] has shown
that neurons in visual cortex tend to have very small correlations between their firing
rates: the mean (± SEM) Pearson’s linear correlation coefficients between visual
cortical neurons is 0.01 ± 0.002, and the correlations are not significantly larger for
neurons with similar receptive fields than for neurons with very different receptive
fields [Ecker et al., 2010].

The reader should note that these results are highly controversial, with previous
studies reporting much larger average correlation coefficients, some of which were
larger than 0.3. [Ecker et al., 2010; Gawne et al., 1996; Reich et al., 2001; Kohn and
Smith, 2005; Gutnisky and Dragoi, 2008; Smith and Kohn, 2008]. Ecker et al. claim
that this large discrepancy is a result of potentially significant systematic errors in
the other groups’ results [Ecker et al., 2010].

As an example, when one performs extracellular recordings (which is the norm
when recording from several neurons at once), multiple, very fine, and very near
to each other, wires are inserted into the cortex, and voltage traces are recorded.
These are then high-pass filtered and thresholded to obtain spikes. The remaining
problem is to identify which spikes came from which neurons, and this is no easy
task. Since different neurons will be different distances from the electrodes, and have
different orientations with respect to the electrodes, their spikes can yield different
voltage traces across the set of electrodes. One then attempts to cluster the spikes
into groups, with each cluster corresponding to a (putative) single neuron. Of course,
if some of the spikes are mis-assigned, then the apparent correlations could be poorly
estimated. This is less of an issue with retinal recordings, like those of [Schneidman et
al., 2006], where a piece of disembodied retina is laid directly on top of the recording
electrodes, so the physical locations of the retinal ganglion cells (which tile the surface
of the retina) correspond more closely to the electrode locations. Thus, the retinal
correlation studies are less controversial.

Similar to the sparseness measurements discussed in the previous section, the
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correlations present in cortical responses to natural images decrease when a larger
fraction of the visual field is covered by the stimulus [Vinje and Gallant, 2002;
Vinje and Gallant, 2000; Haider et al., 2010], as a result of inhibitory interneuronal
connections [Haider et al., 2010].

As in the case of the direct sparseness measurements, I conclude that V1 has
mechanisms that decorrelate its neuronal activities (namely, lateral inhibition [Haider
et al., 2010]), and that the resultant correlations may be small, but this is still an
active area of research.

Recently, it has been observed that the statistical dependence between neurons
increases during development. In particular, the Kullback-Leibler (KL) divergence
between the probability distribution function (PDF) of neural activities, and the
product of the marginal distributions over each neuron’s state (which assumes in-
dependence) increases during development [Berkes et al., 2009; Berkes et al., 2011].
The KL divergence measures how different two probability distributions are from each
other. This observation (and others) have been interpreted to mean that cortex is
not explicitly forming a sparse representation, but rather that V1 learns a Bayesian
prior over image statistics [Berkes et al., 2011].

Thus, there is much controversy over whether or not V1 neuronal activities are
statistically independent. As we noted above, one could create a sparse coding model
with a non-factorial prior over neuronal activations, and thus the independence prop-
erty is not strictly necessary for sparse coding models.

4.3.4 Can cortical activity be linearly decoded to recover the stim-
ulus?

This prediction is by far the least experimentally accessible of the ones listed above.
Given the (enormous) number of neurons in V1, answering this question is quite a
challenge. The challenge is reduced somewhat by the topographic organization of V1,
wherein the physical layout of V1 forms a (distorted) map of the retina [Dayan and
Abbott, 2001; Adams and Horton, 2002; Engel et al., 1997]. Put another way, nearby
neurons in V1 have receptive fields located in similar portions of visual space, and
the organization of these receptive fields across the surface of V1 forms a map of the
retina.

Thus, if one could record from a sufficiently large number of very nearby neurons,
one could ask if this sub-region of V1 can be linearly decoded to recover the portion
of visual input from the corresponding region of visual space. Unfortunately, even
this simplified study is still extremely difficult, and thus it has not been performed.

Assuming that some aspects of neurophysiology, and neural computation, general-
ize across neural systems, however, some insight might be gained from similar studies
performed on other preparations. For example, Stanley and colleagues recorded si-
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multaneous activity from 177 neurons in the cat LGN, and trained a linear decoder
to estimate the stimulus from these responses. On test data (not used to train the
decoder) the linear decoding could account for 20% − 50% of the variance in the
input stimulus, and the decoded estimate contained many qualitative features of the
stimulus [Stanley et al., 1999] . While these results are not quantitatively that com-
pelling, 177 is a very small fraction of the number of neurons in LGN, and so a better
decoding is almost certainly possible.

Similarly, Bialek and colleagues recorded from the H1 motion-sensitive neurons
in a blowfly in response to a randomly moving stimulus, and then found the optimal
(causal) linear decoder to recover the velocity profile (velocity as a function of time)
from the spiking activity [Bialek et al., 1991]. They found that the linear decoder
could do a reasonably good job of recovering the stimulus (on held-out test data
not used to train the decoder), and that the addition of quadratic terms in their
decoder – corresponding to the second-order terms in the Volterra expansion – did
not significantly improve the decoding accuracy.

I conclude that some neural systems have been observed to display linear decod-
ability, but that this has yet to be studied in the visual cortex. One can also generalize
the notion of sparse coding beyond linear image models. For example, Karklin and Si-
moncelli recently published a (non-linear) model, in which non-linear functions of the
image were learned so as to maximize the mutual information between the function
outputs and the image input, while maintaining sparseness of the outputs [Karklin
and Simoncelli, 2011]. Thus, it may not be necessary for neural systems to be linearly
decodable, even if they are performing some variant of sparse coding.

4.4 Summary

To recap, even whitened images contain significant redundancy, which can be reduced
by an appropriate transformation (recoding) of the image. One popular proposal is
that this is done by sparse coding – somewhat analogous to regularized regression –
in which weights and basis functions are chosen such that a linear reconstruction of
the image is possible, using minimal values for the weights.

This is an appealing proposal for neural systems, because this notion of mini-
mizing the weights would correspond to minimizing neuronal activity, which leads to
energetic efficiency. At the same time, sparse coding is an appealing process because
it helps to find parsimonious “explanations” for the stimulus in terms of environmen-
tal causes [Olshausen and Field, 1997; Rehn and Sommer, 2007]. I will discuss this
process briefly below, but first note that this is valuable because, at some level in
the hierarchy, the visual system contains a semantic description of the environment,
in which discrete objects are identified, and the transformation from raw image to
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such a high-level description is facilitated by parsimonious causal explanations of the
stimulus.

I conclude from this discussion that sparse coding is an appealing proposal, and
that there is some experimental support, of varying degrees of strength, to suggest
that it may, in fact, provide a reasonable systems-level explanation for many physio-
logical properties of the primary visual cortex.

4.4.1 Explaining Away

I will finish this chapter with a brief discussion of the notion of “explaining away”,
which helps to emphasize some of the power of sparse coding for image processing [Ol-
shausen and Field, 1997; Rehn and Sommer, 2007].

Consider a large dictionary of basis functions, some subset of which are active
in response to any given image. If the dictionary is overcomplete, then the bases
cannot by mutually orthogonal, and thus some will have (potentially large) overlap
with each other. In a purely feed-forward network (with no lateral interactions), the
weights of the bases will depend only on the projection of the image onto said bases.
Thus, similar (strongly overlapping) bases will have similar weights in response to
a given image. Since the bases are (by assumption) not identical, one of them will
have a larger projection onto the image, and will thus provide a better match for
the image features. In seeking a parsimonious “explanation” for the image, then, it
would be desirable to suppress the feature with less-than-maximal projection onto
the image, in the case where a similar feature is more strongly represented. This
suppression is called “explaining away”, and can be implemented in a network model
of sparse coding by lateral interactions between the units [Rozell et al., 2008; Rehn and
Sommer, 2007]. Similarly, the lateral inhibition in visual cortex could be implementing
this idea [Haider et al., 2010; Vinje and Gallant, 2002; Vinje and Gallant, 2000].
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Chapter 5

(How) can biophysical neurons learn a
sparse code for natural images?

In the previous chapter, I argued that primary visual cortex really does appear to
form a sparse code for natural images. However, given that the visual cortical recep-
tive fields are a product of development (and not hard-coded from birth) [Imbert and
Buisseret, 1975; Cynader et al., 1973], one should not be completely satisfied with the
sparse coding proposal until it is understood how it might be implemented by biolog-
ical systems, as well as why it is a good idea, and what its observable consequences
might be.

With regards to these last two points, I refer the reader to the previous chapter,
which summarizes the extensive literature on this topic. As I will demonstrate in this
chapter, however, the existing work fails to address the question of how a sparse code
might be learned by a group of biophysical neurons (or, indeed, whether this is even
possible), and thus cannot be completely satisfactory in and of itself.

5.1 Sparseness and decorrelation allow biophysical neu-
rons learn a linear generative code for natural im-
ages

Consider the learning rule via which the sparse coding algorithms of [Olshausen and
Field, 1996; Rehn and Sommer, 2007] update their bases (Eq. 4.5), and which opti-
mizes the linear generative model formed by the weights (Ai) of the bases:

∆Qij ∝ Ai

(
Ij −

∑
k

AkQkj

)
. (5.1)
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Since we generally use these bases to attempt to understand the receptive fields
of V1 neurons, and those receptive fields (presumably) describe the regions in visual
space from which the cell receives synaptic input, we would like to consider the values
Qij as the strengths of synaptic connections between V1 neurons (indexed by i), and
LGN neurons (which relay RGC outputs – roughly analogous to image pixels, indexed
by i). Indeed, as I will show later in this chapter, even when the neurons are not linear
time-invariant filters (as in Ch. 1.3.3), the spike-triggered average stimulus (STA) can
still recover exactly the strengths of the inputs from image pixels to the neurons.

However, once one makes the connection between the bases and synaptic strengths,
it is clear that the update (learning) rule described in Eq. 5.1 is not biologically
plausible because it is synaptically non-local. Recall that synaptic strengths in cor-
tex are modified depending on the pre- and post-synaptic activities [Feldman, 2009;
Abbott and Nelson, 2000], which in this case correspond to the inputs Ij, and the
outputs Ai.

In Eq. 5.1, however, updates to the “synaptic” connection Qij depend on all the
activities {Ai} of all of the neurons in the network, while it is not clear that each
individual synapse would have access to that information.

One subtle point, which does not affect my argument (above), is that of synaptic
scaling. Indeed, it appears that cortical neurons can simultaneously scale all of their
synaptic strengths either up or down by the same amount, so as to homeostatically
regulate the amount of input they receive [Abbott and Nelson, 2000]. This is roughly
analogous to having the update to Qij depend on [{Qij} ∀j], in addition to Ai and
Ij, in which the update to any particular synapse on a given cell depends on what
happens at other synapses on the same cell. This mechanism does not allow, however,
for updates to a synapse to depend directly on the activities of other cells that do
not connect at that synapse.

In the remainder of this section, I will discuss a resolution to this problem that
allows for synaptically local plasticity rules to result in the formation of an optimal
linear generative image model by the neuronal activities [Zylberberg et al., 2011].

Consider the non-local update rule in Eq 5.1. Expanding the polynomial, and
averaging over image presentations,

〈∆Qij〉 ∝ 〈AiIj〉 −
〈
A2
iQij

〉
−
∑
k 6=i

〈AiAkQkj〉 . (5.2)

If the learning rate is small, such that the feed-forward weights change only slowly
over time, then one can approximate that they are constant over some (small) number
of image presentations, and take them outside of the averaging brackets:
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〈∆Qij〉 ∼ 〈AiIj〉 −
〈
A2
i

〉
Qij −

∑
k 6=i

〈AiAk〉Qkj. (5.3)

Now, so long as the neuronal activities are uncorrelated, and all units have the
same average activity level µ (when averaged over many image presentations; I will
later discuss how these constraints might be enforced, and whether or not they are
realistic), 〈AiAk〉 = 〈Ai〉 〈Ak〉 = µ2 ∀i, k, and thus the learning rule reduces to

〈∆Qij〉 ∼ 〈AiIj〉 −
〈
A2
i

〉
Qij − µ2

∑
k 6=i

Qkj. (5.4)

This last term could be small compared to the first two for a few reasons (which
are easily satisfied). First, if the neurons in the network have sparse activity, meaning
they are highly selective to particular image features, then 〈A2

i 〉 � 〈Ai〉
2 = µ2, and

the second-to-last term dwarfs the last one.
Furthermore, the last term, µ2

∑
k 6=iQkj, involves a sum over many different basis

functions (model neuronal receptive fields). Some of these will be positive for a given
pixel, whereas others will be negative. These random signs mean that the sum tends
towards zero.

Thus, in the limit of sparse and uncorrelated neuronal activity, gradient descent
on the error function E yields approximately

〈∆Qij〉 ∼ 〈AiIj〉 −
〈
A2
i

〉
Qij, (5.5)

which is equivalent to the average update from Oja’s implementation of Hebbian
learning, which was originally proposed as a way for a single neuron to learn the
first principal component of the stimulus [Oja, 1982]. This rule is synaptically local
inasmuch as the change in the connection strength between pixel j and neuron i
depends only on the pre-synaptic activity Ij, the post-synaptic activity Ai, and the
current value of the connection strength Qij.

Thus, a neuronal network could learn to approximately solve the same error min-
imization problem as did previous, non-local sparse coding algorithms [Rehn and
Sommer, 2007; Olshausen and Field, 1996], using only synaptically local plasticity
rules.

Interestingly, this result suggests that, even if the model neurons’ outputs (say,
spikes) are generated from the input in a highly non-linear way, if the network uses the
above learning rule (Eq 5.5), then a linear decoding of the network activity should
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provide a good match to the input: Ij ≈
∑

iAiQij . This linear decodability has
previously been observed in physiology experiments [Bialek et al., 1991; Stanley et
al., 1999], as well as models designed to maximize the information rate about input
stimulus conveyed by individual spiking neurons [Bialek et al., 1993; DeWeese, 1996].

I conclude this section by reiterating that, if the neuronal activities can be made
sparse and uncorrelated (as they appear to be in cortex [Haider et al., 2010; Vinje
and Gallant, 2002; Vinje and Gallant, 2000; Hromádka et al., 2008; Baddeley et al.,
1997]), then a synaptically local plasticity rule can suffice to learn to form an optimal
linear generative model of the input. The remainder of this chapter will discuss the
construction of a model neuronal network that does precisely this, and the study of
the properties of that network.

5.2 The Sparse And Independent Local network (SAIL-
net)

5.2.1 SAILnet architecture and dynamics

Previous work has shown that the inference step (determining the maximum-lihelihood
source weights Ai) in a sparse coding model can be implemented by a network of neu-
rons with both lateral (between these neurons), and feed-forward (from the image
pixels, in a rough approximation of the thalamic input to V1) connections [Rozell et
al., 2008]. The nature of the sparseness penalty (L0 or L1 norm for example) depends
on the thresholding function in the model neuron. When integrate-and-fire dynamics
are used to generate the neuronal activities, these networks minimize the L0 cost
function [Shapero et al., 2011]. Such an architecture is described in Fig. 5.1.

Independent of this motivation, I use leaky integrate-and-fire (LIF) neurons as
a biophysically realistic, yet simple, way to generate model neuronal activities in
response to input stimuli. My main interest is in the learning process, and the specifics
of how the dynamics perform inference are not crucial to this work, although they
are an interesting and active area of research.

Towards this end, I implement a network of spiking, leaky integrate-and-fire
units [Dayan and Abbott, 2001; Izhikevich, 2007] as model neurons. As in many
previous models [Rozell et al., 2008; Perrinet et al., 2004; Falconbridge et al., 2006;
Földiák, 1990; Hopfield, 1984], each unit has a time dependent internal variable ui(t)
and an output yi(t) associated with it. The simulation of my network operates in dis-
crete time. The neuronal output at time t, yi(t), is binary-valued: it is either 1 (spike)
or 0 (no spike), whereas the internal variable ui(t) is a continuous-valued function of
time that is analogous to the membrane potential of a neuron. When this internal
variable exceeds a threshold θi, the unit fires a punctate spike of output activity that
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Figure 5.1: SAILnet network architecture and neuron model (A) The network
architecture is based on that of Rozell, and inspired by recent physiology experiments. In-
puts Ij to the network (from image pixels) contact the neuron at connections (synapses)
with strengths Qij, whereas inhibitory recurrent connections between neurons in the net-
work have strengths Wik. The outputs of the neurons are given by yi(t); these spiking
outputs are communicated through the recurrent connections, and also on to subsequent
stages of sensory processing, such as cortical area V2, which are not included in this
model. (B) Circuit diagram of the simplified leaky integrate-and-fire neuron model. The
inputs from the stimulus with pixel values Ij, and the other neurons in the network, com-
bine to form the input current Iinput(t) =

∑
j QijIj −

∑
k 6=iWikyk(t) to the cell. This

current charges up the capacitor, while some current can leak to ground through a resistor
in parallel with the capacitor. The resistors are shown as cylinders to highlight the fact
that they model the collective action of ion channels in the cell membrane. The internal
variable evolves in time via the differential equation for voltage across our capacitor, in
response to input current Iinput: dui(t)/dt + ui(t) = Iinput(t), which I simulate in dis-
crete time. Once that voltage exceeds threshold θi, the diode, which models neuronal
voltage-gated ion channels, opens, causing the cell to fire a punctate action potential, or
spike, of activity. For sake of a complete circuit diagram, the output is denoted as the
voltage, Vout, across some (small: Rout � R) resistance. After spiking, the unit’s internal
variable returns to the resting value of 0, from whence it can again be charged up.

lasts for one time step. This thresholding feature plays the role of neuronal voltage-
gated ion channels (represented, as in Hopfield’s circuit model [Hopfield, 1984], by a
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diode) whose opening allows cortical neurons to fire. Other units in the network, and
the inputs Ij, which are pixel intensities in an image, modify the internal variable
ui(t) by injecting current into the model neuron. The structure of my network, and
circuit diagram of the neuron model, are illustrated in Fig. 5.1, as are the model
dynamics.

Similar to V1 [Haider et al., 2010; Vinje and Gallant, 2002; Vinje and Gallant,
2000], inhibitory lateral connections (with strengths Wik) will act to decorrelate the
model neurons. I will further enforce sparseness by allowing each neuron’s firing
threshold (θi) to vary slowly over time, where the variation in firing threshold will
seek to maintain a target long-term-averaged firing rate. This variable threshold
mimics physiological homeostatic mechanisms like the variable intrinsic excitability
of cortical neurons [Turrigiano et al., 1998], or synaptic scaling [Abbott and Nelson,
2000; Marder and Goaillard, 2006] (discussed briefly in the previous section).

For the results presented in this chapter, I will study a network of 256× 6 = 1536
neurons that recode 16× 16 pixel whitened image patches. The network is six-times
overcomplete with respect to the number of input pixels. This mimics the anatomical
fact that V1 contains many more neurons than does LGN, from which it receives
its inputs. Owing to the computational complexity of the problem — there are
O(N2) parameters to be learned in a SAILnet model containing N neurons — it
is prohibitively time consuming to consider networks that are much more than 6×
overcomplete.

This six-times overcompleteness is in a sense analogous to the three-times over-
completeness of the SSC network described by Rehn and Sommer, since the outputs
of their computational units could be either positive or negative [Rehn and Som-
mer, 2007], while my model neurons can output only one type of spike. Thus, each
of their units can be thought of as representing a pair of my model neurons, with
opposite-signed receptive fields.

5.2.2 SAILnet plasticity rules and objective function

I assess the computational output of each neuron in response to a stimulus image I
by counting the number of spikes emitted by that neuron, Ai =

∑
t yi(t), following

stimulus onset for a brief period of time lasting five times the time constant τRC of
the RC circuit. My simulation updates the membrane potential every 0.1 τRC , thus
there are 50 steps in the numerical integration following each stimulus presentation.
Consequently, at least in principle, 50 is the maximum number of spikes I could
observe from one neuron in response to any image. Instead of counting spikes, one
could use first-spike latencies to measure the computational output [VanRullen and
Thorpe, 2002; Delorme et al., 2000]; these two measures are highly correlated in my
simulations, with shorter latencies corresponding to greater spike counts (data not
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shown). The network learns via rules similar to those of Földiák [Földiák, 1990;
Falconbridge et al., 2006]. These rules drive each unit to be active for only a small
but non-zero fraction of the time (lifetime sparseness) and to maintain uncorrelated
activity with respect to all other units in the network:

∆Wik = α(AiAm − µ2)

∆Qij = βAi(Ij − AiQij) (5.6)

∆θi = γ(Ai − µ),

where µ is the target average value for the number of spikes per image, which
defines each neuron’s lifetime sparseness, and α, β, and γ are learning rates — small
positive constants that determine how quickly the network modifies itself. Updating
the feed-forward weights Qij in my model is achieved with Oja’s implementation of
Hebb’s rule [Oja, 1982]; this rule is what drives the network to represent the input.
Note that because the firing rates are low (µ = 0.05 spikes per neuron per image, for
the results shown in this chapter), and spikes can only be emitted in integer units, my
model implicitly allows only small numbers of neurons to be active at any given time
(so called “hard” sparseness, or L0 sparseness), similar to what is achieved by other
means in some recent non-spiking sparse coding models [Rehn and Sommer, 2007;
Rozell et al., 2008].

Unlike previous work [Olshausen and Field, 1996; Rehn and Sommer, 2007], which
performed unconstrained optimization on a cost function penalizing both reconstruc-
tion error and network activity, my model’s learning rules (above) can be viewed as
a gradient descent approach to a constrained optimization problem in which the net-
work seeks to minimize the error between the input pixel values {Ij}, and a linear
generative model formed by all of the neurons Ij =

∑
iAiQij, while maintaining fixed

average firing rates and no firing rate correlations.
Given the neuronal activities Ai in response to an image, and their feed-forward

weights Qij, one can form a linear generative model I of the input stimulus Ij =∑
iAiQij. The mean squared error between that model I and the true input I is

E =
∑

j (Ij −
∑

iAiQij)
2, and the creation of a high fidelity representation suggests

that this error function E, or one like it, be minimized by the learning process.
Suppose that the neuronal network is not free to choose any solution to this

problem; instead it must satisfy constraints that require the neurons to have a fixed
average firing rate of µ spikes per image, and minimal correlation between neurons.
Indeed, neurons tend to have low mean firing rates when averaged across many differ-
ent images, and those firing rates span a finite range of values [Hromádka et al., 2008;
Baddeley et al., 1997; Abeles et al., 1990], motivating this first constraint. The sec-
ond constraint is justified by observations that neural systems tend to exhibit little
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or no correlation between pairs of units [Ecker et al., 2010; Renart et al., 2010], and
that the correlation between the activity of V1 neurons decreases significantly as one
increases the fraction of the visual field that is stimulated [Vinje and Gallant, 2000].

I use the method of Lagrange multipliers to solve this problem, allowing the
learning rules to adapt the network so as to minimize reconstruction error while
approximately satisfying these constraints. To do this, I perform gradient descent on
a Lagrange function L that contains both the error function and the constraints:

L =
∑
j

(
Ij −

∑
i

AiQij

)2

(5.7)

+
∑
i

λi(Ai − µ) +
∑
i 6=k

τik(AiAk − µ2),

where the sets of values {λi} and {τik} are the (unknown) Lagrange multipliers.
To perform constrained optimization, gradient descent is performed with respect to
all of the free parameters in L: namely, the set of feed-forward connection strengths
{Qik}, and the Lagrange multipliers {λi} and {τik}:

∂L
∂λi

= Ai − µ (5.8)

∂L
∂τik

= AiAk − µ2

∂L
∂Qij

= −2Ai(Ij −
∑
k

AkQkj).

The first two equations lead to the learning rules for inhibitory connections and
firing thresholds, once one identifies λi ∝ −θi and τik ∝ −Wik; these network parame-
ters correspond to the Lagrange multipliers of the constrained optimization problem.
This reflects the fact that the role of the variable thresholds and inhibitory connections
is to enforce the sparseness and non-correlation constraints in the network, which is
the same as the role of the Lagrange multipliers in the Lagrange function.

I emphasize that the terms of my objective function that effectively enforce these
constraints are critical for my algorithm’s success. By contrast, consider the situa-
tion in which the model units had no other possibility but to maintain their fixed
firing rate and lack of correlation, due to some clever parameterization of the model’s
state space. In that case, one could simply minimize the reconstruction error, via
gradient descent, and the existence of these extra terms, or even of the analogous La-
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grange multipliers, would be redundant. However, in my model, each change of the
feed-forward weights (Qij) could change the neuron’s firing rate, and the correlation
between its activity and those of other neurons, unless something forces the network
back towards the constraint surface. The variable firing thresholds and inhibitory
inter-neuronal connection strengths in the model perform this function.

As discussed in the previous section, since the neuronal activities are both sparse
and uncorrelated (owing to the constraints), the learning rule for the feed-forward
weights Qij simplifies to one that is synaptically local (Eq. 5.5). I thus observe that
the learning rules in Eq. 5.6 amount to gradient descent on a Lagrange function such
that (once the network converges), its activities form optimal linear generative models
of input stimuli, while maintaining sparse and decorrelated neuronal activities. Note
that, while the linear generative model is optimized, given the dynamics that convert
image inputs into neuronal outputs, the specific reconstruction error values might
depend quite sensitively on the particular choice of dynamics.

In Fig. 5.2, I demonstrate that, once the network is trained, the activity of the
SAILnet units can be linearly decoded to recover (approximately) the input stimulus.

The learning rules encourage all neurons to have the same average firing rate
of µ spikes per image, which may at first appear to be at odds with the observa-
tion [Hromádka et al., 2008; Baddeley et al., 1997] that cortical neurons display a
broad distribution of activities — firing rates vary from neuron to neuron.

However, when trained on natural images, neurons in SAILnet can actually exhibit
a fairly broad range of firing rates. Moreover, the mean firing rate distribution ranges
from approximately lognormal to exponential in response to natural image stimuli,
depending on the mean contrast of the stimulus ensemble with which they are probed.
I discuss this further in the Firing Rates section below.

I emphasize here that each of the learning rules is “synaptically” local: the infor-
mation required to determine the change in the connection strength at any synaptic
junction between two units is merely the activity of the pre- and post-synaptic units.
The inhibitory lateral connection strengths, for example, are modified according to
how many spikes arrived at the synapse, and how many times the post-synaptic unit
spiked. The information required for the unit to modify its firing threshold is the
unit’s own firing rate. Finally, the rule for modifying the feed-forward connections re-
quires only the pre-synaptic activity Ij, the post-synaptic activity Ai, and the present
strength of that connection Qij.

5.2.3 Training SAILnet

I initialize each simulation with all inhibitory connection strengths Wik set to zero,
all firing thresholds θi set to 5, and the feed-forward weights Qij initialized with
Gaussian white noise. To train the network, batches of 100 images with zero mean,
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Figure 5.2: SAILnet activity can be linearly decoded to approximately re-
cover the input stimulus (A) An example of a whitened image, which was not included
in the training set. (B) A reconstruction of the whitened image in (A), by linear decoding
of the firing rates of SAILnet neurons, which were trained on a different set of natural
images. The input image was divided into non-overlapping 16× 16 pixel patches, each of
which was preprocessed so as to have zero-mean and unit variance of the pixel values (like
the training set). Each patch was presented to SAILnet, and the number of spikes were
recorded from each unit in response to each patch. A linear decoding of SAILnet activity
for each patch Ij =

∑
iAiQij was formed by multiplying each unit’s activity by that

unit’s RF and summing over all neurons. The preprocessing was then inverted, and the
patches were tiled together to form the image in panel (B). The decoded image resembles
the original, but is not identical, owing to the severe compression ratio; on average, each
16×16 input patch, which is defined by 256 continuous-valued parameters, is represented
by only 75 binary spikes of activity, emitted by a small subset of the neural population.
Linear decodability is a product of the SAILnet learning rules, and it is an observed feature
of multiple sensory systems.

and unit standard deviation pixel values, are presented, and the number of spikes from
each neuron are counted separately for each image. After each batch, the average
update for the network properties is computed (following the above learning rules)
over the 100-image batch. This batch-wise training lets me use matrix operations for
computing the updates, which dramatically speeds up the training process. After each
update, all negative values for inhibitory connections Wik (which would correspond to
excitatory connections) are set to zero, as in the previous work by Földiák [Földiák,
1990]. Relaxing this constraint, and allowing the recurrent weights to change sign does
not affect my qualitative conclusions. In that case, some of the recurrent connections
become excitatory, while the majority remain inhibitory, the RFs are qualitatively
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unchanged, and the distributions of inhibitory and excitatory connection strengths
are both approximately lognormal (data not shown).

The relative values of α, β and γ were chosen based on Földiák’s observation that
β must be much less than α or γ so that the neurons’ activities remain sparse and
uncorrelated, even in the face of changing feed-forward weights [Földiák, 1990].

I study the network after the properties stop changing macroscopically over time.
However, as noted in the firing rates section of this paper, the network parameters
continue to bounce around the final “target” state, with the size of the bounces
determined by the learning rates in the network. Empirically, I find that it takes on
the order of 107 image presentations (105 steps of 100 image presentations per step)
for this dynamic equilibrium to be established, for the set of learning rates that I used
(below). For the results presented in this paper, I let the network train for roughly
2× 108 image presentations.

To speed up the simulation, I start the training with large values for the learning
rates, and these are eventually reduced. For the last 104 batches of training (106

image presentations), the learning rates were (α, β, γ) = (0.1, 0.001, 0.01).

5.3 When trained on natural images, SAILnet model
neurons learn the full diversity of receptive fields
displayed by V1 simple cells

The RFs of 196 randomly selected units from SAILnet are shown in Fig. 5.3, as
measured by their spike-triggered average activity in response to whitened natural
images. These are virtually identical to the feed-forward weights of the units. This
can be understood by considering the equilibrium point of the learning rule for the
feed-froward weights Qij in which

〈∆Qij〉 ∝ 〈Ai (Ij − AiQij)〉 = 0 (5.9)

=⇒ 〈AiIj〉 =
〈
A2
iQij

〉
=
〈
A2
i

〉
Qij,

where the second equality occurs because the learning has converged, and thus
the feed-forward weights are constant over repeated image presentations. Thus,
〈AiIj〉 / 〈A2

i 〉 = Qij; the spike-triggered average (STA) stimulus is equivalent to the
set of feed-forward weights, up to a multiplicative scaling factor that can be calculated
from the spike train.

To facilitate a comparison between the SAILnet RFs, and those measured in
macaque V1 (courtesy of D. Ringach), I fit both the SAILnet, and the macaque RFs
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Figure 5.3: SAILnet learns receptive fields (RFs) with the same diversity of
shapes as those of simple cells in macaque primary visual cortex (V1) (A)
98 randomly selected receptive fields recorded from simple cells in macaque monkey V1
(courtesy of D. Ringach). Each square in the grid represents one neuronal RF. The sizes
of these RFs, and their positions within the windows, have no meaning in comparison to
the SAILnet data. The data to the right of the break line have an angular scale (degrees
of visual angle spanned horizontally by the displayed RF window) of 0.94o, whereas those
to the left of it span 1.88o. (B) RFs of 196 randomly selected model neurons from a 1536-
unit SAILnet trained on patches drawn from whitened natural images. The gray value in
all squares represents zero, whereas the lighter pixels correspond to positive values, and
the darker pixels correspond to negative values. All RFs are sorted by a size parameter,
determined by a Gabor function best fit to the RF. The SAILnet model RFs show the
same diversity of shapes as do the RFs of simple cells in macaque monkey V1 (A); both
the model units and the population of recorded V1 neurons consist of small unoriented
features, oriented Gabor-like wavelets containing multiple subfields, and elongated edge-
detectors. (C) I fit the SAILnet and macaque RFs to Gabor functions, in order to quantify
their shapes. Shown are the dimensionless width and length parameters (σx × f and
σy × f , respectively) of the 299 SAILnet RFs and 116 (out of 250 RFs in the dataset)
macaque RFs for which the Gabor fitting routine converged. These parameters represent
the size of the Gaussian envelope in either direction, in terms of the number of cycles
of the sinusoid. The SAILnet data (open blue circles) span the space of the macaque
data (solid red squares) from the Gabor fitting analysis; SAILnet is accounting for all of
the observed RF shapes. I highlight four SAILnet RFs with distinct shapes, which are
identified by the large triangular symbols that are also displayed next to the corresponding
RFs in panel (B).
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to Gabor functions. As in the SSC study of Rehn and Sommer, only those RFs that
could be sensibly described by a Gabor function were included in Fig. 5.3; for example,
I excluded RFs with substantial support along the square boundary, suggesting that
the RF is only partly visible. In [Zylberberg et al., 2011], I discuss the Gabor fitting
routine and the quality control measures I used to define and identify meaningful fits.

The SAILnet model RFs show the same diversity of shapes observed in macaque
V1, and in the non-local SSC model [Rehn and Sommer, 2007]. They consist of three
qualitatively distinct classes of neuronal RFs: small unoriented features, localized and
oriented Gabor-like filters, and elongated edge-detectors. The SAILnet learning rules
approximately minimize the same cost function as the SSC model, albeit with con-
straints as opposed to unconstrained optimization, which explains how it is possible
for SAILnet to learn similar RFs using only local rules. Furthermore, in my model,
the number of co-active units is small, owing to the low average lifetime neuronal
firing rates, and the fact that spikes can only be emitted in integer numbers. This
feature is similar to the L0-norm minimization used in the SSC model of Rehn and
Sommer and the LCA model of Rozell and colleagues [Rozell et al., 2008].

When it was first published, this was the first demonstration that a network of
spiking neurons using only synaptically local plasticity rules applied to natural images
can account for the observed diversity of V1 simple cell RF shapes [Zylberberg et al.,
2011].

The specific shapes of the SAILnet receptive fields depend on both the mean
firing rate of the units, µ, as well as the degree of overcompleteness of the network. A
rough attempt to optimize these values to best fit the macaque data was performed
manually, but a full search over the space of {overcompleteness, µ} would be too time
consuming. As a result, it is likely that even tighter quantitative agreement between
the SAILnet, and macaque receptive fields is possible: while the SAILnet RFs shown
in Fig. 5.3 show the full set of shapes displayed by the macaque RFs, SAILnet also
shows many RFs that are longer and narrower than the macaque RFs. In that sense,
the observed SAILnet RFs are a superset of the macaque ones.

5.4 SAILnet units can exhibit a broad distribution of
mean firing rates in response to natural images

The SAILnet learning rules encourage every unit to have the same target value,
µ, for its average firing rate, which might appear to be inconsistent with observa-
tions [Hromádka et al., 2008; Baddeley et al., 1997; Abeles et al., 1990] that cortical
neurons exhibit a broad distribution of mean firing rates. However, I will demonstrate
herein that SAILnet, too, can display a wide range of mean rates.

To determine the distribution of mean firing rates across the population of model
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neurons in the network, I studied the fully trained network. The measurement was
then performed with all learning rates set to zero, so that I was probing the properties
of the network at one fixed set of learned parameter values, rather than observing
changes in network properties over time.

I then counted the number of spikes per image from each unit to estimate each
neuron’s average firing rate, as it might be measured in a physiology experiment. The
distribution of these mean firing rates is fairly broad and well-described by a lognormal
distribution (Fig. 5.4). This distribution is strongly non-monotonic, clearly indicating
that it is poorly fit by an exponential function.

Subsequently, I probed the same network (still with the learning turned off, so that
the network parameters were identical in both cases) with 50, 000 low-contrast images
consisting of patches from our training ensemble with all pixel values multiplied by
1/3. I found that the firing rate distribution was markedly different than what I
found when the network was probed with higher-contrast stimuli. In particular, it
became a monotonic decreasing function that was similarly well-described by either
a lognormal or an exponential function.

From the dynamics of the leaky integrate-and-fire units, it is clear that the low
contrast stimuli with reduced pixel values will cause the units to charge up more
slowly and subsequently to spike less in the allotted time the network is given to
view each image. Consequently, the firing rate distribution gets shifted towards lower
firing rates. However, negative firing rates are impossible, so in addition to being
shifted, the low-firing-rate tail of the distribution is effectively truncated. Note that
truncating the lognormal distribution anywhere to the right of the peak results in a
distribution that looks qualitatively similar to an exponential.

Mean firing rates in primary auditory cortex (A1) have been reported to obey a
lognormal distribution [Hromádka et al., 2008] , whether spontaneous or stimulus-
evoked in both awake and anesthetized animals. However, exponentially distributed
spontaneous mean firing rates have also been reported in awake rat A1 [Gaese and
Ostwald, 2003]. Although several groups have measured the distribution of firing
rates over time for individual neurons [Baddeley et al., 1997; Abeles et al., 1990], I
am unaware of a published claim regarding the distribution of mean firing rates in
visual cortex.

Recall that the SAILnet learning rules encourage the neurons to all have the same
average firing rate. This fact may be puzzling at first given the spread in mean firing
rates apparent in the distributions shown in Fig. 5.4. There are two main effects to
consider when making sense of this: finite measurement time, and non-zero step-sizes
for plasticity.

The first effect relates to the fact that there is intrinsic randomness in the mea-
surement process — which randomly selected image patches happen to fall in the
ensemble of probe stimuli — so that the measured distribution tends to be broader
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Figure 5.4: Units in SAILnet exhibit a broad range of mean firing rates,
which can be lognormally or exponentially distributed depending on the
choice of probe stimuli. (A) Frequency histogram of firing rates averaged over 50, 000
image patches drawn from the training ensemble for each of the 1536 units of a SAILnet
trained on whitened natural images. All learning rates were set to zero during probe
stimulus presentation. A wide range of mean rates was observed, but as expected, the
distribution is peaked near µ = 0.05 spikes per image, the target mean firing rate of the
neurons. The paucity of units with near-zero firing rates suggests that this distribution is
closer to lognormal than exponential. Accordingly, the lognormal least-squares (solid red
curve) fit accounts for R2 = 96 % of the variance in the data, whereas the exponential
fit (black dashed curve) accounts for only 2 %. (B) In response to low contrast stimuli,
the firing rate distribution across the units (every unit fired at least once) in the same
network as in panel (A) was similarly well fit by either an exponential (dashed black curve;
accounting for R2 = 88 % of the variance in the data) or a lognormal function (solid red
curve; accounting for 90 % of the variance). The low-contrast stimulus ensemble used to
probe the network consisted of images drawn from the training set, with all pixel values
reduced by a factor of three.

than the “true” underlying distribution of the system. To check that this effect is not
responsible for the broad distribution in firing rates, I computed the variance in the
measured firing rate distribution after different numbers of images were presented to
the network. The variance decreased until it reached an asymptotic value after ap-
proximately 25, 000–30, 000 image presentations (data not shown). Thus, the 50, 000
image sample size in my experiment is large enough to see the true distribution; finite
sample-size effects do not affect the distributions that I observed.
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The other, more interesting, effect that gives rise to a broad distribution of firing
rates is related to learning. While the network is being trained, the feed-forward
weights, inhibitory lateral connections, and firing thresholds get modified in discrete
jumps, after every image presentation (or every batch of images). Since those jumps
are of a non-zero size – with their magnitudes determined by the learning rates α, β,
and γ – there will be times when the firing threshold gets pushed below the specific
value that would lead to the unit having exactly the target firing rate, and the unit will
thus spike more than the target rate. Similarly, some jumps will push the threshold
above that specific value, and the unit will fire less than the target amount. Even
after learning has converged, and the parameters are no longer changing on average in
response to additional image presentations, the network parameters are still bouncing
around their average (optimal) values; any image presentation that makes a neuron
spike more than the target amount results in an increased firing threshold, while any
image that makes the neuron fire less than the target amount leads to a decreased
firing threshold. Recent results suggest that the sizes of these updates (jumps) are
quite large for real neurons [Clopath et al., 2010]. Interestingly, this indicates that
the observed broad distributions in firing rate [Hromádka et al., 2008] do not rule
out the possibility that homeostatic mechanisms are driving each neuron to have the
same average firing rate.

Reducing the SAILnet learning rates α, β and γ does reduce the variance of the
firing rate distributions, but the qualitative conclusions — non-monotonic, approx-
imately lognormal firing rate distribution in response to images from the training
set, and monotonic, exponential/lognormal distribution in response to low contrast
images — are unchanged when I use different learning rates for the network (data
not shown).

5.5 Pairs of SAILnet units have small firing rate cor-
relations.

Recent experimental work has shown that neurons in visual cortex tend to have small
correlations between their firing rates [Ecker et al., 2010; Renart et al., 2010]. In
order to facilitate a comparison between the SAILnet model, and the physiological
observations, I measured the (Pearson’s) linear correlation coefficients between spike
counts of SAILnet units, in response to an ensemble 30,000 natural images. These
correlations (Fig. 5.5) tend to be near zero, as is observed experimentally [Ecker et
al., 2010], while the experimental data show a larger variance in the distribution of
correlation coefficients than I observe with SAILnet. Like the firing rate distribution
(discussed above), the distribution of correlation coefficients is affected by the update
sizes (learning rates) in the simulation, with larger update sizes leading to a larger
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variance of the measured distribution.

Figure 5.5: Pairs of SAILnet units have small firing rate correlations. The
probability distribution function (PDF) of the Pearson’s linear correlation coefficients be-
tween the spike-counts of pairs of SAILnet neurons responding to an ensemble of 30,000
natural images is sharply peaked near zero.

In Fig. 5.5, the distribution appears truncated on the left. This effect arises
because there is a lower bound on the correlation between the neuronal firing rates
that arises when the two neurons are never co-active. The low mean firing rate of
µ = 0.05 spikes per neuron per image used in the simulation means that this bound
is not too far below zero.

5.6 Connectivity learned by SAILnet allows for further
experimental tests of the model

Several previous studies of sparse coding models have focused on the receptive fields
learned by adaptation to naturalistic inputs [Olshausen and Field, 1996; Rehn and
Sommer, 2007; Földiák, 1990; Falconbridge et al., 2006; Perrinet et al., 2004; Ol-
shausen et al., 2009] , but I am aware of only one published study [Garrigues and
Olshausen, 2008] that investigated the connectivity in sparse coding models, albeit
with a model that lacked biological realism. One previous study [Koulakov et al.,
2009] investigated synaptic mechanisms that could give rise to the measured distri-
bution of connection strengths, but this work was not performed in the context of
a sensory coding model. No prior work has studied the connectivity learned in a
biophysically well-motivated sensory coding network, which would provide additional
testable predictions for physiology experiments.
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Fig. 5.6 shows the distribution of non-zero connection strengths (non-zero ele-
ments of the matrix Wik) learned by a 1536-unit SAILnet with µ = 0.05 trained on
16 × 16 pixel patches drawn from whitened natural images. When trained on nat-
ural images, SAILnet learns an approximately lognormal distribution of inhibitory
connection strengths; a Gaussian best fit to the histogram of the logarithms of the
connection strengths accounts for 98% of the variance in the data.

Figure 5.6: Connectivity learned by SAILnet allows for further experimental
tests of the model. (A) Probability Density Function (PDF) of the logarithms of the
inhibitory connection strengths (non-zero elements of the matrix Wik) learned by a 1536
unit SAILnet trained on 16× 16 pixel patches drawn from whitened natural images. The
measured values (blue points) are well-described by a Gaussian distribution (solid line),
which accounts for R2 = 98 % of the variance in the dataset. This indicates that the data
are approximately lognormally distributed. Note that there are some systematic deviations
between the Gaussian best fit and the true distribution, particularly on the low-connection
strength tail, similar to what has been observed for excitatory connections within V1.
This plot was created using the binning procedure of Hromádka and colleagues. The
histogram was normalized to have unit area under the curve. (B) The strengths of the
inhibitory connections between pairs of cells are correlated with the overlap between those
cells’ receptive fields: cells with significantly overlapping RFs tend to have strong mutual
inhibition. Data shown in panel (B) are for 5,000 randomly selected pairs of cells. Pairs of
cells with significantly negatively overlapping RFs tend not to have inhibitory connections
between them, hence the apparent asymmetry in the RF overlap distribution obtained by
marginalizing over connection strengths in panel (B).
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Despite this close agreement, SAILnet shows some systematic deviations from the
lognormal fit, especially on the low-connection-strength tail of the distribution. Inter-
estingly, the experimental data [Song. et al., 2005] show an approximately lognormal
distribution of excitatory connection strengths, with similar systematic deviations
(Fig. 5b of [Song. et al., 2005]). By contrast, prior theoretical work [Koulakov et
al., 2009; Song. et al., 2005] has employed learning rules tailored to create exactly
lognormal connection strength distributions, and thus show no such deviations. Note
also that neither of these previous studies addressed the issue of how neurons might
represent sensory inputs, nor how they might learn those representations.

Whereas the experimental data of Song et al. show a roughly lognormal distri-
bution in the strengths of excitatory connections between V1 neurons, the SAILnet
model makes predictions about the strengths of inhibitory connections in V1. The
1 ms time window for measuring post-synaptic potentials in the experiment of Song
et al. ensured that they measured only direct synaptic connections. However, sup-
pressive interactions between excitatory neurons in cortex are mediated by inhibitory
interneurons. Consequently, the inhibitory interactions between pairs of excitatory
neurons in V1 must involve two or more synaptic connections between the cells.
Thus, my model predicts that the inhibitory functional connections between excita-
tory simple cells in V1, like the excitatory connections measured by Song et al., should
follow an approximately lognormal distribution (Fig. 5.6), but it does not specify the
extent to which this is achieved through variations in strength among dendritic or
axonal synaptic connections of V1 inhibitory interneurons. One recent theoretical
study [Clopath et al., 2010] has uncovered some interesting relationships between
coding schemes and connectivity in cortex, but it did not make any statements about
the anticipated distribution of inhibitory connections.

Interestingly, there is a clear correlation between the strengths of the inhibitory
connection between pairs of SAILnet neurons, and the overlap (measured by vector
dot product) between their receptive fields: neurons with significantly overlapping
receptive fields tend to have strong inhibitory connections between them (Fig. 5.6).
This correlation is expected because cells with similar RFs receive much common
feed-forward input. Thus, in order to keep their activities uncorrelated, significant
mutual inhibition is required. This same feature was assumed by the LCA algorithm
of Rozell and colleagues, but is naturally learned by SAILnet, in response to natural
stimuli.

The connectivity predictions are amenable to direct experimental testing, al-
though that testing may be challenging, owing to the difficulty of measuring func-
tional connectivity mediated by two or more synaptic connections between pairs of
V1 excitatory simple cells.
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5.7 Discussion

The present work demonstrates that synaptically local plasticity rules can be used to
learn a sparse code for natural images that accounts for the diverse shapes of V1 simple
cell receptive fields. The SAILnet model uses purely synaptically local learning rules
— connection strengths are updated based only on the number of spikes arriving
at the synapse and the number of spikes generated by the post-synaptic cell. By
contrast, the local competition algorithm (LCA) of Rozell and colleagues assumes
that Wik =

∑
j QijQkj, so that the strength of the inhibitory connection between

two neurons is equal to the overlap (i.e., vector dot product) between their receptive
fields [Rozell et al., 2008]. This non-local rule requires that individual inhibitory
synapses must somehow keep track of the changes in the receptive fields of many
neurons throughout the network in order to update their strengths. Moreover, the
LCA network does not contain spiking units, even though cortical neurons are known
to communicate via discrete, indistinguishable, spikes of activity [Dayan and Abbott,
2001].

Similarly, the units in the networks of [Falconbridge et al., 2006] and [Földiák,
1990] communicate via continuous-valued functions of time. Although these two
models do use synaptically local plasticity rules, neither of these groups demonstrated
that such local plasticity rules are sufficient to explain the diversity of simple cell RF
shapes observed in V1, nor have they determined the objective function optimized by
their learning rules.

Independent of the present work [Shapero et al., 2011] have recently implemented
a spiking version of LCA [Rozell et al., 2008] that uses integrate-and-fire units. How-
ever, that work does not address the issue of how to train such a network using
synaptically local plasticity rules.

Some groups have used spiking units to perform image coding [Perrinet et al., 2004;
Perrinet, 2010; VanRullen and Thorpe, 2002; Masquelier and Thorpe, 2007; Delorme
et al., 2000], but those studies did not address the question of whether synaptically
local plasticity rules can account for the observed diversity of V1 RF shapes. Interest-
ingly, it has been demonstrated [Delorme et al., 2000] that orientation selectivity can
arise from spike timing dependent plasticity rules applied to natural scenes. Previous
work [Perrinet, 2010] has also explored the addition of homeostatic mechanisms to
sparse coding algorithms and found it to improve the rate at which learning converges
and to qualitatively affect the shapes of the learned RFs; homeostasis is enforced in
the SAILnet model via modifiable firing thresholds.

Finally, one previous group [Savin et al., 2010] has demonstrated that indepen-
dent component analysis (ICA) can be implemented with spiking neurons and local
plasticity rules. That work did not, however, account for the diverse shapes of V1
receptive fields, although they did also demonstrate that homeostasis (a mean firing
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rate constraint) was critical to the learning process.
The SAILnet model attempts to be biophysically realistic, but it is not a per-

fect model of visual cortex in all of its details. In particular, like many previous
models [Olshausen and Field, 1996; Rehn and Sommer, 2007; Perrinet et al., 2004;
Perrinet, 2010; Olshausen et al., 2009], the network alternates between brief periods
of inference (the representation of the input by a specific population activity pattern
in the network) and learning (the modification of synaptic strengths), which may
not be realistic. Indeed, it is unclear how cortical neurons would “know” when the
inference period is over and when the learning period should begin, though it is in-
teresting to note that these iterations could be tied to the onset of saccades, given
the 5τRC ≈ 100 ms inference period between “learning” stages in our model.

As in previous models, the inputs to SAILnet, Ij, are continuous-valued, whereas
the actual inputs from the lateral geniculate nucleus to primary visual cortex (V1)
are spiking. As mentioned above, suppressive interactions between pairs of units in
the model are mediated by direct, one-way, inhibitory synaptic connections between
units, rather than being mediated by a distinct population of inhibitory interneu-
rons. I did not include the effects of spike-timing dependent plasticity [Dan and Poo,
2006], although this has been shown to have interesting theoretical implications for
cortex [Clopath et al., 2010] in general and for image coding in particular [Masquelier
and Thorpe, 2007; Delorme et al., 2000]. An interesting avenue for future research is
to develop models that incorporate spike timing dependent learning rules, applied to
time-varying image stimuli such as natural movies.

Finally, the neurons in my model have no intrinsic noise in their activities, al-
though that noise may, in practice, be small [Mainen and Sejnowski, 1995].

Interestingly, since the SAILnet model neurons require a finite amount of time to
update their internal variables ui(t), there is a hysteresis effect if one presents the
network with time-varying image stimuli — the content of previous frames affects
how the network processes and represents the current frame. Even if the features in
a movie change slowly, the optimal representation of one frame can be very different
from the optimal representation of the next frame in many image coding models, so
this hysteresis effect can provide stability to the image representation compared to
other models such as ICA [Bell and Sejnowski, 1997; Hyvärinen and Hoyer, 2001]

or Olshausen and Field’s Sparsenet [Olshausen and Field, 1996]. This effect has
previously been studied by Rozell and colleagues [Rozell et al., 2008], encouraging
future efforts to apply SAILnet to dynamic stimuli.

Though it is highly simplified, the SAILnet model does captures many qualitative
features of V1, such as inhibitory lateral connections [Haider et al., 2010], largely
uncorrelated neuronal activities [Ecker et al., 2010; Renart et al., 2010], sparse neu-
ronal activity [Haider et al., 2010; Vinje and Gallant, 2002; Vinje and Gallant, 2000;
Hromádka et al., 2008; Baddeley et al., 1997], a greater number of cortical neurons
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than input neurons (overcomplete representation), synaptically local learning rules,
and spiking neurons. Importantly, this model allows me to make several falsifiable
experimental predictions about interneuronal connectivity and population activity in
cortex. I hope that these predictions will help uncover the coding principles at work
in the visual cortex.

5.7.1 Information theoretic discussion of SAILnet

Unlike ICA and sparse coding, which both explicitly model the probability distribu-
tion function over natural images – and thus have statistical independence as one of
their objectives – SAILnet instead seeks the more modest goal of pair-wise decor-
relation. As I have previously discussed, maximum information-theoretic efficiency
comes with statistically independent units, yet decorrelation is no guarantee of full
independence. In that sense, SAILnet is not as sophisticated as either ICA, or the
sparse coding models.

At the same time, one of the main arguments in favor of sparse coding is that
of metabolic efficiency: that, because brains are energetically expensive, evolution
should favor designs that minimize this cost. In that regard, SAILnet fares quite
well, inasmuch as its objective is to form the best linear generative model it can, for a
given level of energetic cost (defined by the firing rate constraint). Clearly, this metric
is closely related to the information-theoretic one, so SAILnet may not be quite as
far behind the canonical sparse coding models as it may appear at first blush.

Regardless of these efficiency arguments, my SAILnet model is sufficient to demon-
strate that synaptically local plasticity rules can suffice to form an optimal linear
generative code for natural images, and that such a model can account for the full
diversity of shapes exhibited by V1 receptive fields.

The Gabor fitting routine used to generate the scatter plot in Fig. 5.3 was provided
by Jason Murphy, and the macaque V1 receptive fields in Fig. 5.3 are courtesy of Dario
Ringach.
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Chapter 6

Why does sparseness in ferret V1
decrease during development?

6.1 Decreasing sparseness during development is in
conflict with the canonical sparse coding models

As I have shown in previous chapters, sparseness is an appealing theoretical con-
cept, which leads to efficient cortical representations for natural images, and one for
which there is a reasonable amount of experimental support. At the same time, ge-
netic and developmental evidence suggest that visual cortical physiology is a product
of experience, and thus the theoretical models should be compatible with both the
physiology of the mature animal, and the developmental trends leading up to that
state. Finally, since it is unclear what absolute sparseness level is required to support
the sparse coding hypothesis, one might instead choose to study its evolution during
the development of the animal: how does sparseness change as a result of adaptation
and experience? For typical sparse coding models (e.g., [Olshausen and Field, 1996;
Rehn and Sommer, 2007] and related models), neurons gradually learn features that
allow for a sparser encoding of the stimuli, so the sparseness invariably increases over
time (Fig. 6.1). Physiology experiments, however, show something very different in
the developing visual cortex. Recently, Berkes and colleagues measured multi-unit V1
activity in awake young ferrets viewing natural movies, and found that, as the animals
matured, their stimulus-driven V1 activity became less sparse [Berkes et al., 2009]

(Fig. 6.1), in stark contrast with the computational models [Rehn and Sommer, 2007;
Olshausen and Field, 1996; Bell and Sejnowski, 1997]. Conversely, it has also been
observed that spontaneous slow-wave activity (recorded in the absence of a visual
stimulus) in the anesthetized mouse visual cortex becomes sparser immediately after
eye-opening [Rochefort et al., 2009]. While these experimental findings may seem
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contradictory, spontaneous activity is not as easily related to the sparse coding hy-
pothesis, which does not have much to say about activity in the absence of sensory
input.

Figure 6.1: V1 developmental data pose a challenge to canonical sparse cod-
ing models. Multi-unit activity in primary visual cortex (V1) of awake young ferrets
watching natural movies show decreasing sparseness over time (A) . The sparseness met-
rics shown in this figure are defined in section 6.2, and the data are courtesy of Pietro
Berkes. For comparison, the canonical Sparsenet model of Olshausen and Field shows the
opposite trend (B), for which sparseness increases as a result of experience with viewing
natural scenes. Both plots have logarithmic horizontal axes.

One natural explanation for the ferret developmental data might involve home-
ostasis, in which the cortex seeks to maintain some fixed target level of activity. If
the developmental initial conditions resulted in neuronal activities that were below
the target activity level, regulation might lead to decreasing sparseness.

Indeed, homeostatic activity regulation has been widely reported in visual corti-
cal neurons [Mrsic-Flogel et al., 2007; Hendry and Jones, 1988; Marder and Goail-
lard, 2006; Desai et al., 1999; Turrigiano et al., 1998; Turrigiano and Nelson, 2000;
Burrone and Murthy, 2003; Davis and Bezprozvanny, 2001]. Specifically, when cul-
tured visual cortical pyramidal cells have their firing rates pharmacologically altered
— by blocking GABA-mediated inhibition, for example — adaptation returns the cells
to their original firing rates, without the removal of the pharmacological agents [Tur-
rigiano et al., 1998]. Moreover, when deprived of stimulation, such cultured cells
become more excitable [Desai et al., 1999]. Similar observations have been made
in vivo [Mrsic-Flogel et al., 2007]. One might then wonder whether a computa-
tional model in which neuronal activity is regulated by homeostasis might be able
to account for both the receptive field shapes of V1 simple cells, which are cor-
rectly predicted by the sparseness-maximizing models [Olshausen and Field, 1996;
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Rehn and Sommer, 2007; Bell and Sejnowski, 1997], and the decreasing sparse-
ness observed during V1 development [Berkes et al., 2009], which is in conflict with
sparseness-maximizing models.

In the preceding chapter, I introduced a computational model for visual cortex
that could successfully reproduce the full diversity of RFs exhibited by V1 simple cells
while using spiking neurons and synaptically local plasticity rules [Zylberberg et al.,
2011]. The model is computationally well-understood, in that learning in the model
can be shown to maximize the fidelity with which the neural activities represent input
stimuli subject to constraints on the mean firing rates and pair-wise neuronal correla-
tions. In order for these synaptically local plasticity rules to optimize the cooperative
representation of input stimuli by the neural population, the activities must be sparse
and uncorrelated throughout learning [Zylberberg et al., 2011], hence the constraints.
These constraints are enforced in the model by homeostatic mechanisms that regulate
the neural activity levels via variable firing thresholds — equivalent to synaptic scal-
ing [Abbott and Nelson, 2000] or modifiable intrinsic excitability [Turrigiano, 2011] for
the leaky integrate-and-fire model neurons — and modifiable inhibitory lateral con-
nections that lead to uncorrelated neuronal discharges. In order for the neurons in
the homeostatic SAILnet model to learn RFs that agree with physiology experiments,
this target activity level must be low, so the neuronal responses are sparse, despite
the fact that they were not made so by an optimization mechanism that necessarily
results in increasing sparseness during learning. Specifically, if the initial conditions
of that model result in neuronal activities that are below the target activity level,
learning makes the responses less sparse over time, in agreement with the ferret V1
data [Berkes et al., 2009], whereas initial conditions producing activity exceeding the
target level result in increased sparseness over time.

Thus, since the homeostatic SAILnet model can account for the decreased sparse-
ness during development, in addition to the specific diversity of RFs reported in V1,
it might provide a more parsimonious explanation for V1 physiology than previous
models involving active maximization of sparseness. The importance of sparseness
and decorrelation in allowing synaptically local plasticity rules to optimize coopera-
tive representations in the model suggests that homeostasis may play a surprisingly
deep role in the learning of sensory representations.

In the remainder of this chapter, I will provide evidence to support these claims.

64



Chapter 6. Why does sparseness in ferret V1 decrease during development?

6.2 SAILnet single- and multi-unit activity can be-
come less sparse during receptive field formation,
in agreement with V1 development

To study the change in sparseness over time, I ran SAILnet simulations, starting with
randomized feed-forward weights, recurrent connection strengths, and firing thresh-
olds that were initialized with Gaussian-distributed white noise: I give values for all
of these parameters in the Methods section at the end of this chapter. At different
times during the adaptation process, I recorded the simulated neuronal activity in
response to randomly selected batches of natural images. Following a recent exper-
imental study [Berkes et al., 2009], I computed from these network activities three
sparseness measures. First, the “activity sparseness” (Sa), which is the fraction of
units inactive in response to any given stimulus:

Sa = 1− na/N, (6.1)

where na is the number of neurons whose activities rose above some threshold
number of spikes in response to the stimulus, and N is the total number of neurons
for which data were recorded. I set the threshold to 6 spikes for the single-unit
sparseness data shown herein, and to 8 spikes for the “multi-unit” measurement,
discussed below. I performed this measurement by averaging over 500 different input
stimuli. The activity sparseness Sa is very similar to the L0 norm of the neuronal
activities.

In addition, I recorded two other sparseness measures, originally due to Treves
& Rolls [Treves and Rolls, 1991] (TR), and subsequently modified by Vinje & Gal-
lant [Vinje and Gallant, 2000]. First, consider what I will call the “TR population
sparseness” measure, Sp,

Sp =

1−

(∑N
i=1 |Ai|/N

)2
∑N

i=1 |Ai|2/N

× (1− 1

N

)−1
, (6.2)

where Ai is the activity of neuron i. Note that Sp is assessed in response to a single
image, although for the current purposes, I will average this measure over 500 different
image stimuli, to infer the average TR population sparseness. Similarly, I will define
the “TR lifetime” sparseness of a single neuron, Sn, the same way (Eq. 6.2), but with
the replacement that Ai represents the neuron’s activity in response to a given image
i, and N will be the number of different image stimuli (500) for which activities are
recorded. Similar to the TR population sparseness Sp, I will average these values over
the entire population for our measurement.
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In Fig. 6.2, I show the receptive fields of SAILnet neurons both before and after the
network is trained with natural scenes. I also show the evolution of the sparseness
measures during that training process. Contrary to the more common sparseness-
maximizing models (e.g. [Olshausen and Field, 1996; Rehn and Sommer, 2007; Bell
and Sejnowski, 1997] (see Fig. 6.1), our SAILnet model can display decreased sparse-
ness by all three measures while it is learning localized and oriented receptive fields.
The time course of the sparseness measures depends on the learning rates (adapta-
tion step sizes), with smaller learning rates leading to slower changes in sparseness
measures, as expected (data not shown).

Figure 6.2: SAILnet single-unit activity can become less sparse during re-
ceptive field formation. A SAILnet simulation was performed in which the RFs, firing
thresholds, and recurrent connection strengths were initialized with random numbers (see
Methods section for details). The RFs of the 100 neurons are shown in panel A. Each box
on the grid shows the RF of one neuron, with white corresponding to positive pixel values,
and black corresponding to negative ones. After training with natural images, these same
SAILnet neurons have oriented, localized RFs (B). All three sparseness measures decrease
during the training period (C).

Note that I cannot quantitatively compare these model predictions (Fig. 6.2)
directly with the ferret V1 developmental data reported by Berkes and colleagues
because the physiology data are for multi-unit activity [Berkes et al., 2009], whereas
the results in Fig. 6.2 depict single-unit activity.

Multi-unit activity is recorded in extracellular physiology experiments by high-
pass filtering the voltage trace, and thresholding to obtain spikes. Whereas one would
then perform “spike sorting” to assign the spikes to individual neurons in order to
obtain single-unit data, for multi-unit data, one simply considers the aggregate of all
of the spikes observed. Multi-unit data is easier to obtain than single-unit data, does
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not fall prey to systematic errors from spike sorting, and reflects the summation of
the activity of many different neurons.

In order to make a more meaningful comparison between the model and experi-
ment, I mimicked a multi-unit activity measurement by randomly grouping together
sets of 4 SAILnet neurons, whose activities are then summed to form a multi-unit
response. I then repeated the SAILnet simulation, and the sparseness measurements,
using these group activities in place of the single-unit activities for the sparseness
measurements. This procedure yielded results (Fig. 6.3) that are qualitatively sim-
ilar to the single-unit activity shown in Fig. 6.2, but they show a larger change in
sparseness values that is more consistent with the ferret data. A direct quantitative
comparison between the multi-unit model data and the ferret data is difficult because
it is not clear how best to estimate the relevant number of neurons to group together,
or even whether all groupings should have the same number of neurons. However,
it is apparent that SAILnet learning is in qualitative agreement with the ferret V1
development data for the right choice of initial conditions.

Figure 6.3: SAILnet multi-unit activity can become less sparse during re-
ceptive field formation, in qualitative agreement with the ferret V1 devel-
opmental data. I repeated the simulation described in Fig. 6.2, but randomly grouped
together sets of 4 SAILnet neurons whose activities were summed to yield multi-unit ac-
tivity for the sparseness measurements. These multi-unit activities show the same trend
as the single-unit responses shown in Fig. 6.2. Specifically, all three sparseness mea-
sures decrease over time, in qualitative agreement with multi-unit activity recorded during
development in ferret V1 (Fig. 6.1).
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6.3 For some initial conditions, SAILnet single-unit ac-
tivity becomes more sparse during receptive field
formation

I find that SAILnet does not require sparseness to decrease over time, rather, it is
compatible with decreasing sparseness. To demonstrate this point, I repeated the
SAILnet simulations, and sparseness measurements, with different initial conditions:
the feed-forward weights and recurrent connection strengths were randomized with
the mean and variance of the initial recurrent strength distribution being smaller than
for the results shown in Figs. 6.2 and 6.3, while firing thresholds had the same value
for all neurons. For these initial conditions, but with all other model parameters
including the learning rates and target neural firing rate the same as the simulation
discussed above (and in Fig. 6.2), I observe an increase in sparseness during training
(Fig. 6.4), similar to what one finds with Sparsenet [Olshausen and Field, 1996]

(Fig. 6.1), and related models.

Figure 6.4: For some initial conditions, SAILnet single unit sparseness mea-
sures increase during training. A SAILnet simulation was performed in which the
RFs were initially randomized, and the recurrent connection strengths were initialized with
random numbers that were much smaller than for the simulation described in Fig. 6.2 (see
Methods section for details). The RFs of the 100 neurons are shown in panel A. As in
Fig. 6.2, each box on the grid depicts the RF of one neuron, with lighter tones cor-
responding to positive pixel values, and darker tones corresponding to negative values.
After training with natural images, these same SAILnet neurons have oriented, localized
RFs (B). All three sparseness measures increase during the training period (C). Aside
from the initial conditions, the network used to generate these data was identical to the
one from Fig. 6.2.
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6.4 The diversity of receptive field shapes depends on
the homeostatic set point of unit activity in SAIL-
net

When trained on natural scenes, SAILnet learns the same specific diversity of recep-
tive fields as exhibited by macaque V1 [Zylberberg et al., 2011] provided that the
homeostatically controlled target firing rate for single units is set to the appropriate
level. As I have previously discussed, the optimal target firing (for which the RFs
give the best agreement) rate depends non-trivially on the degree of overcompleteness
of the representation — the number of neurons compared to the number of pixels in
the input image frames. The specific shapes and sizes of the RFs learned by SAIL-
net also depend on the value of the target firing rate, however, and when the firing
rates are set too low, the dictionary of learned RF shapes is qualitatively different
from what is seen in V1 (Fig. 6.5). For example, the unoriented, “bloblike” RFs
evident in V1 and for SAILnet with higher firing rates (Fig. 6.5) are nearly absent
from the dictionaries obtained with lower target firing rates. Conversely, for very
high firing rates, SAILnet is unable to learn a sparse representation [Zylberberg et
al., 2011]. In addition, the overcompleteness of the representation also has a dramatic
effect on the receptive field shapes [Rehn and Sommer, 2007; Olshausen et al., 2009;
Zylberberg et al., 2011]. For a fixed target firing rate, using a more overcomplete
representation results in smaller receptive fields.

The dependence of RF size on mean neuronal firing rate can be understood as
follows. The learning rules drive the neural activities to form a linear generative
model of the input stimulus, such that the product of each neuron’s RF and its firing
rate, when summed over all neurons, should match the input. In that case, when
the firing rates are low and the neurons are uncorrelated, only a small number of
neurons will be active for each stimulus, and thus their receptive fields will need to be
fairly large so that the sum of that small number of RFs will span the image space.
Conversely, when the firing rates are higher, there may be many neurons active for
any given stimulus, and the neurons can subsequently have smaller receptive fields,
while still forming a good linear generative model of the stimulus.

6.5 Discussion

I have demonstrated that a computational model can learn V1-like receptive fields
while simultaneously exhibiting either a decrease, or an increase, in the sparseness of
neuronal activities. Therefore, the type of active sparseness maximization exhibited
by previous sparse coding models [Bell and Sejnowski, 1997; Olshausen and Field,
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Figure 6.5: The dictionary of receptive fields learned by SAILnet depends on
the homeostatically controlled firing rates. SAILnet simulations were performed
with initial conditions identical to those used to generate the data shown in Fig. 6.4, but
with different target firing rates: 0.01, 0.05, or 0.25 spikes per neuron per image. As
the target firing rate increases, the RFs become progressively smaller, with more circular
“blob-like” shapes emerging. Beneath each panel of RFs, I indicate the average size
of the RFs in that dictionary, where I define the size of the jth neuron’s RF, sj, to be

sj =
∑

i |Qij|/
√∑

iQ
2
ij. In other words, it is the ratio of the L1 and L2 norms of the

pixel values in the receptive field. This measure is 1 if there is only one non-zero pixel
value in the receptive field, and has a maximum value of

√
N (where N is the number

of pixels in receptive field), when the receptive field uniformly covers the entire image
frame. The measure s increases monotonically as one increases the area of support of
the receptive field. Thus, it is evident that higher firing rates lead to smaller RFs in the
model.

1996; Rehn and Sommer, 2007] is not necessary to produce observed V1 receptive field
shapes, nor is it required to learn a sparse representation of natural scenes. Moreover,
the SAILnet model is also unique in that it achieves these objectives using only
synaptically local information during learning, as required for biological plausibility.
Just as important, the computational objective being met by the adaptation process
in SAILnet is well defined mathematically [Zylberberg et al., 2011].

In the SAILnet model, homeostatic constraints effectively control the sparseness
level. Thus, even though the final state of the network after adaptation must be
sparse, if the initial conditions are even sparser than the target level, adaptation
decreases the single- and multi-unit sparseness measures over time (Figs. 6.2 and 6.3).
Conversely, if the initial conditions are less sparse than the target level, sparseness
will increase over time (Fig. 6.4), similar to what is observed in the canonical sparse
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coding models such as Sparsenet [Olshausen and Field, 1996] (Fig. 6.1).
I have also found that the specific diversity of RF shapes learned by SAILnet is

sensitive to the homeostatic set point for neural firing rates in the model. Similarly,
homeostatic mechanisms regulating the total synaptic drive from retina to individual
superior colliculus neurons have been implicated in the development of RF shapes in
superior colliculus of the mouse [Chandrasekaran et al., 2007], though there are several
differences. For example, the stimulus driving activity in that case was composed of
spontaneous retinal waves [Butts, 2002], rather than natural visual input, and the
main effect reported was a trade-off between the peak firing rate of a neuron in
response to punctate stimuli compared with the total area of its RF, rather than
qualitative changes in the shapes of RFs as I have found. Homeostatic mechanisms
are also reported to play a role in the development of somatosensory maps in rat
barrel cortex [Foeller and Feldman, 2004], but the observed changes consist mainly
of shifting RF centers rather than qualitative changes in RF shapes.

With the appropriately chosen target firing rate, SAILnet reproduces the range
of RF shapes observed in mature V1, including ridge-like edge detectors, Gabor-like
filters with multiple subfields, and unoriented “blobs,” comparable to the diversity
of shapes found by the Sparse Set Coding (SSC) model [Rehn and Sommer, 2007].
Both the SSC model and SAILnet produce a greater diversity of RF shapes as the
overcompleteness of the corresponding model is increased — the unoriented shapes
in particular are more prevalent in more overcomplete representations.

The developmental trends in sparseness are important because physiology ex-
periments [Imbert and Buisseret, 1975; Cynader et al., 1973] show that receptive
fields are a product of developmental processes, yet the majority of theoretical mod-
els require that sparseness strictly increases as a result of experience, and thus
this type of measurement has the potential to rule out a broad class of models
(or at least specific model implementations, including [Olshausen and Field, 1996;
Rehn and Sommer, 2007; Bell and Sejnowski, 1997; Smith and Lewicki, 2006]) during
development, which is rare in Systems Neuroscience. I hope that this work helps to
motivate that experimentation.

The initial motivation for incorporating homeostasis into the SAILnet model was
unrelated to the issue of changing sparseness during development. Rather, analytic
calculations [Zylberberg et al., 2011] suggested that, in order for synaptically local
plasticity rules to optimize the cooperative representation of the stimulus by the
neuronal population, the activities would need to remain sparse and decorrelated, and
homeostasis is a natural and biologically plausible way to satisfy those conditions. In
the retina, for example, spontaneous activity has been found to become less correlated
between neuron pairs over time [Demas et al., 2003], broadly consistent with the type
of learning rules I am considering. In fact, a variety of homeostatic mechanisms have
been reported in various stages of V1 development, including plasticity of intrinsic
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excitability as well as synaptic scaling [Turrigiano, 2011]. Homeostatic rules based
on synaptic scaling have been incorporated successfully in models of self-organizing
maps [Sullivan and de Sa, 2006]. Either of these types of mechanisms could perform
the homeostasis modeled by the variable threshold in SAILnet.

These findings suggest that homeostasis, which is widely believed to play a deep
role in learning and adaptation by neural systems, may in fact be crucial for the
development of the specific diversity of receptive field shapes in visual cortex that
can efficiently represent natural images.

The ferret data in Fig. 6.1 were provided by Pietro Berkes.

6.6 Methods

6.6.1 SAILnet simulation details

For all simulations shown herein, the feed-forward weights Qij were initialized with
Gaussian white noise, and the learning rates were set to (α, β, γ) = (0.05, 0.002, 0.02).
For the data shown in Fig. 6.4, the initial recurrent connection strengths Wij were
drawn randomly from a N (0, 1) distribution, the firing thresholds θi were initialized
to 0.1 ∀i, and the model neuronal activity became more sparse during training. For
the results shown in Figs. 6.2 and 6.3, the initial recurrent connection strengths were
drawn randomly from a N (5, 5) distribution, the firing thresholds were drawn from a
N (0.5, 0.25) distribution, and the model neuronal activity became less sparse during
training.

Sparsenet simulation details

The Sparsenet results shown in Fig. 6.1 were generated using code publicly distributed
by Bruno Olshausen (http://redwood.berkeley.edu/bruno/sparsenet/). The “soft”
thresholding option was used, and the sparseness parameter λ was set to 0.15, simi-
lar to [Olshausen and Field, 1996]. The network was trained with whitened natural
images, with feed-forward weights initialized with Gaussian white noise, and the learn-
ing rate η was set to 0.25. One cannot achieve decreasing sparseness with Sparsenet
by changing the parameters (η, λ), and/or the initial conditions of the feed-forward
weights. This can be understood by considering that the rules used to generate
Sparsenet model activity explicitly maximize the sparseness. Furthermore, I experi-
mented with several different combinations of parameters and initial conditions, and
found in all cases results similar to those shown in Fig. 6.1 (data not shown).
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Conclusions

In this thesis, I have reviewed much literature on natural image statistics, the periph-
eral mammalian visual system, and the connection therebetween. This connection
can be roughly summarized as follows: natural images have statistical regularities
that allow for them to be recoding in more information-theoretically efficient ways,
and the mammalian visual system reflects many features of this optimal recoding.

While the existing body of work provides an elegant ecological explanation for the
observed physiology, explaining both what features the visual system should have and
why those features are beneficial, I have argued that the existing body of research
fails to answer the (critical) question of how those features should be developed.

Addressing this question forms the main advance from this thesis; below, I discuss
the specific contributions made.

7.1 Contributions of this thesis

Sparse coding is an appealing hypothesis that can explain many salient features of
the visual cortical physiology. However, the existing sparse coding models fail to
be biologically realistic because they employ synaptically non-local plasticity rules,
while learning in cortex appears to occur by the modification of the strengths of
synaptic connections between neurons, and to depend only on the pre- and post-
synaptic activities. In Ch. 5, I demonstrated that, so long as neuronal activities are
sparse and uncorrelated, synaptically local plasticity rules suffice to learn a sparse,
linear generative code for natural images. I then simulated a model of visual cortex
called SAILnet that implemented these ideas, and found that it learned, when trained
on natural images, the same diversity of receptive field shapes that are exhibited by
simple cells in macaque V1. This provides the first published demonstration that a
biophysically plausible theoretical model can actually account for these receptive field
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shapes.
Recently, it was observed that, while the theoretical sparse coding models show

an increase in sparseness as they adapt to natural image statistics, the sparseness
levels in ferret V1 actually decrease as the animal gains visual experience [Berkes
et al., 2009] . This is perhaps one of the strongest challenges to the sparse coding
hypothesis. However, in Ch. 6, I demonstrated that homeostatic mechanisms, like
those in SAILnet, can explain this observation: if the initial conditions are more sparse
than the homeostatically regulated set-point, then adaptation leads to decreasing
sparseness over time.

Since SAILnet is both a biophysically plausible model for visual cortical devel-
opment, and the first theoretical model to account for both the observed receptive
field shapes, and the developmental trends in sparseness levels, it may be the most
parsimonious systems-level explanation for adaptation in the maturing visual cortex.

Finally, with regards to the low-level statistics of natural images, in Ch. 2, I dis-
cussed previous work that demonstrated that the observed power-law 2-point func-
tions of natural images could be understood in terms of a collage of randomly placed
opaque objects whose sizes follow a power-law distribution. The opacity requirement
in the published model, and the observed power-law 2-point functions of medical im-
ages, in which objects are more transmissive (less opaque) led us to wonder whether
opacity really is an important component of the theoretical understanding. In Ch. 2,
I studied a generalization of the previous image model, in which the objects could
be made partially transparent, and subsequently demonstrated that, so long as the
objects sizes are power-law distributed, opacity does not change the functional form
of the 2-point function. This work helps to unify our understanding of the low-level
statistics of both natural, and medical images.

7.2 Directions for future research

While the work presented in this thesis represents several important advances, it
raises many more issues that form potential directions for future research.

7.2.1 Extend the SAILnet model to the time domain, and model
“on-the-fly” inference

One of the most dissatisfying aspects of the SAILnet model, in comparison to bio-
logical neural systems, is that SAILnet processes still frames, while real brains view
dynamical scenes. Extending SAILnet, and related models, to address this issue
would clearly be desirable. However, this problem is not as easily solved as one might
think.
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In SAILnet, for example, neurons view still frames for an extended period of time,
and the neural representation is built up over that period, as the neurons repeatedly
spike. If the image keeps changing, and the neural representation is to keep up, then
this process of slowly building up the representation must be replaced by a more
“on-the-fly”, causal inference process in which neurons respond to the past so as to
create the present representation, and do so in a relatively short time period, one
that is shorter than the time scale over which the stimulus changes significantly. If
this speed is not present, then by the time the inference is done, and the stimulus is
“understood”, the stimulus will have already changed and the animal, while having
a decent model of the past visual scene, will not have access to current information
about its environment.

This research direction requires confronting the issue of how information might
be encoded causally and has been briefly touched upon by [Bialek et al., 1991], but it
is still unclear what sort of representation one might expect, and thus what specific
functional form to use for the objective function.

One promising approach is suggested by the Liquid State Machine of Mass and
colleagues [Maas and Natschlager, 2002], and related ideas of reservoir computing.
This approach differs considerably from the efficient coding principles discussed in
this thesis, and the inter-relation between these ideas is worthy of study.

7.2.2 What about audition?

Similar to their success in explaining the visual cortex, sparse coding algorithms
trained on natural sound ensembles have been shown to successfully reproduce recep-
tive fields in the peripheral auditory system [Smith and Lewicki, 2006]. Like the visual
sparse coding problem, Smith & Lewicki’s algorithm lacks biophysical plausibility, so
a SAILnet-type approach could represent a serious advance in auditory neuroscience.
In the specific model of [Smith and Lewicki, 2006], inference was performed acausally:
the algorithm was presented with long vectors representing the sound waveforms, and
the best set of features to tile the sound clip was chosen, using a “greedy” matching
pursuit algorithm. In contrast, an animal processing sounds will not know the future
sounds before processing the present ones: at best, it can build up a representation
of the immediate past.

Thus, similar to the problem of using SAILnet for dynamical visual stimuli, the
solution to this problem requires that we confront the issue of causal, on-the-fly
inference, and will thus be a challenge to satisfactorily address.
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7.2.3 Understand the connection between neuronal dynamics and
inference

In the SAILnet model, we used leaky integrate-and-fire dynamics as a simplified, bio-
logically motivated way, to generate neural outputs from inputs, but made no serious
attempt to understand the role that the dynamics play in the inference process, al-
though recent work does suggest that LIF dynamics can find the maximum-likelihood
activations in an L0-minimizing sparse coding model [Shapero et al., 2011].

However, as we have discussed in the introduction to this thesis, real neurons do
not strictly follow LIF dynamics, and indeed real neurons are stochastic, such that
repeat presentations of the same stimuli lead to different spike trains. This could
be the result of slightly different initial conditions on each experimental trial (for
example, the electrical potentials and ion concentrations in all of the neurons), or
could represent intrinsic neural stochasticity.

With regards to deterministic neuron models, the Hodgkin-Huxley equations pro-
vide the most realistic dynamics of any known model, so a natural approach would
be to incorporate them into a SAILnet-like model, and to attempt to understand the
inference problem being solved by their dynamics.

With regards to intrinsically stochastic neuron models, it has been suggested that
stochastic neural dynamics might represent a form of statistical sampling, through
which the brain attempts to model the distribution over possible world-states, con-
ditioned on the (noisy) observations it receives. [Buesing et al., 2011]. This work
is promising, but its rigorous formulations only strictly apply to simplified neuronal
models, and thus understanding how Hodgkin-Huxley dynamics (in the presence of
noise) perform inference remains an open (and very interesting) question.

7.2.4 Create models that respect Dale’s law

While the model neurons in SAILnet all have direct inhibitory connections between
them, excitatory cells in cortex (which the SAILnet neurons are thought to model)
can only inhibit each other via the activity of inhibitory interneurons: the excitatory
neurons drive interneurons to fire, and the interneurons inhibit the excitatory cells.
This is described by Dale’s law, which states that every cortical neuron either excites
every neuron onto which it synapses, or inhibits them, but that neurons cannot excite
some downstream neurons while inhibiting others.

Indeed, in this respect, SAILnet is typical of the existing models of visual cortex,
which tend to disregard Dale’s law. The creation of a model respecting this constraint
is desired because it would allow us to understand how indirect inhibition affects
neural computations. To that effect, we are currently developing a model with a
separate population of inhibitory neurons. Independent of that work, another group
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is pursuing an extension of Rozell’s LCA in which there is a separate inhibitory
population [Zhu et al., 2012]. These works are complementary, in that Zhu et al. are
addressing the inference process, and not the problem of how the network structure
might be learned using synaptically local plasticity rules, while our project studies
the learning, and not the inference, process.

7.2.5 Move beyond rate coding and linear generative models

As I have implied in the discussion about using SAILnet-like models in the time
domain (above), it may be necessary to reconsider how plausible it is to assume that
neuronal systems form linear generative models based on firing rates. Indeed, rates
cannot be immediately inferred from single-neuron spike trains, instead requiring that
one averages over some time window containing several spikes, or averages over several
different neurons with near-identical receptive fields [Shadlen and Newsome, 1994].

At the same time, recent work has cast in doubt the plausibility of rate coding
by showing that a Bayesian-optimal decision algorithm performs worse than a real
animal in a visual 2-alternative forced-choice task when that algorithm uses retinal
ganglion cell firing rates as its inputs, but that the Bayes-optimal algorithm can match
the animal’s performance when it uses spike times instead [Jacobs et al., 2009]. Since
the Bayes-optimal decoder puts an upper limit on the performance possible with rate
coding, this work suggests that we explore other codes, like timing codes, to model
neural systems.

Towards this end, some recent work has explored the notion of sparse coding with-
out requiring linear generative models, in which the neural representation is made to
maximize the mutual information between itself and the stimulus without ever speci-
fying how that representation would be decoded [Karklin and Simoncelli, 2011]. That
work represents an important step in the right direction, but it still uses continuous-
valued outputs from each of the individual computational units (analogous to some-
thing like firing rates), and made no attempt at biophysical plausibility of either the
learning, or the inference, steps in the algorithm.

There is thus an opportunity for research that solves these problems, to understand
how neuronal representations might be formed without appealing to rates and linear
decoding.

7.2.6 Summary

In the preceding few subsections, I have suggested several different lines of inquiry that
would all provide meaningful extensions to the work presented in the earlier chapters
of this thesis. These generally involve the addition of more biophysical realism to the
theoretical models. However, I wish to point out here that highly realistic simulations
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on their own are not very useful unless their functions are deeply understood. In the
extreme case, imagine creating a perfectly realistic simulation of a brain, in which
we simply put every known anatomical and physiological fact into a giant computer,
and run the simulation, similar to the blue brain project (http://bluebrain.epfl.ch/).
In that case, the simulation has so much complexity that understanding which of
its details contribute to each specific function would not necessarily be much easier
than attempting to get the same understanding from experimenting directly on real
brains, although lesion experiments, in which features are iteratively removed from
the simulation to understand the deficits caused by their removal, could potentially
be performed more quickly in the simulated brain than in real brains.

In my opinion, a better approach is to gradually add in more biophysical realism
to the models, and at each stage to understand how the new features work, and
how they affect the function of the whole system. In so doing, once the “final”
model is built, that contains all of the important pieces, we will actually understand
that model well enough to use it to make concrete statements about biology. The
technical work in this thesis represents one step in this chain, in which I elucidated the
conditions under which synaptically local learning rules can optimize the cooperative
neural representation, and studied a model that implements this concept. The future
research directions I proposed in this last chapter pick up that torch, and carry on in
the same spirit.
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