This presentation reports on first evidence for a low-mass-density/positive-cosmological-constant universe that will expand forever, based on observations of a set of 40 high-redshift supernovae. The experimental strategy, data sets, and analysis techniques are described.

The ultimate fate of the Universe, infinite expansion or a big crunch, can be determined by using the redshifts and distances of very distant supernovae to monitor changes in the expansion rate. We can now find large numbers of these distant supernovae, and measure their redshifts and apparent brightnesses; moreover, recent studies of nearby type Ia supernovae have shown how to determine their intrinsic luminosities- and therefore with their apparent brightnesses obtain their distances. The >50 distant supernovae discovered so far provide a record of changes in the expansion rate over the past several billion years. However, it is necessary to extend this expansion history still farther away (hence further back in time) in order to begin to distinguish the causes of he expansion-rate changes-such as the slowing caused by the gravitational attraction of the Universe's mass density, and the possibly counteracting effect of the cosmological constant. Here we report the most distant spectroscopically confirmed supernova. Spectra and photometry from the largest telescopes on the ground and in space show that this ancient supernova is strikingly similar to nearby, recent type Ia supernovae. When combined with previous measurements of nearer supernovae, these new measurements suggest that we may live in a low-mass-density universe.

We report measurements of the mass density, Omega_M, and
cosmological-constant energy density, Omega_Lambda, of the universe based on
the analysis of 42 Type Ia supernovae discovered by the Supernova Cosmology
Project. The magnitude-redshift data for these SNe, at redshifts between 0.18
and 0.83, are fit jointly with a set of SNe from the Calan/Tololo Supernova
Survey, at redshifts below 0.1, to yield values for the cosmological
parameters. All SN peak magnitudes are standardized using a SN Ia lightcurve
width-luminosity relation. The measurement yields a joint probability
distribution of the cosmological parameters that is approximated by the
relation 0.8 Omega_M - 0.6 Omega_Lambda ~= -0.2 +/- 0.1 in the region of
interest (Omega_M <~ 1.5). For a flat (Omega_M + Omega_Lambda = 1) cosmology we
find Omega_M = 0.28{+0.09,-0.08} (1 sigma statistical) {+0.05,-0.04}
(identified systematics). The data are strongly inconsistent with a Lambda = 0
flat cosmology, the simplest inflationary universe model. An open, Lambda = 0
cosmology also does not fit the data well: the data indicate that the
cosmological constant is non-zero and positive, with a confidence of P(Lambda >
0) = 99%, including the identified systematic uncertainties. The best-fit age
of the universe relative to the Hubble time is t_0 = 14.9{+1.4,-1.1} (0.63/h)
Gyr for a flat cosmology. The size of our sample allows us to perform a variety
of statistical tests to check for possible systematic errors and biases. We
find no significant differences in either the host reddening distribution or
Malmquist bias between the low-redshift Calan/Tololo sample and our
high-redshift sample. The conclusions are robust whether or not a
width-luminosity relation is used to standardize the SN peak magnitudes.

In the next decade Type Ia supernovae (SNe Ia) will be used to test theories
predicting changes in the Dark Energy equation of state with time. Ultimately
this requires a dedicated space mission like JDEM. SNe Ia are mature
cosmological probes --- their limitations are well characterized, and a path to
improvement is clear. Dominant systematic errors include photometric
calibration, selection effects, reddening, and population-dependent
differences. Building on past lessons, well-controlled new surveys are poised
to make strides in these areas: the Palomar Transient Factory, Skymapper, La
Silla QUEST, Pan-STARRS, the Dark Energy Survey, LSST, and JDEM. They will
obviate historical calibrations and selection biases, and allow comparisons via
large subsamples. Some systematics follow from our ignorance of SN Ia
progenitors, which there is hope of determining with SN Ia rate studies from
0

The proposed SuperNova/Acceleration Probe (SNAP) mission will have a two-meter class telescope delivering diffraction-limited images to an instrumented 0.7 square degree field in the visible and near-infrared wavelength regime. The requirements for the instrument suite and the present configuration of the focal plane concept are presented. A two year R&D phase, largely supported by the Department of Energy, is just beginning. We describe the development activities that are taking place to advance our preparedness for mission proposal in the areas of detectors and electronics.

A wide field space-based imaging telescope is necessary to fully exploit the technique of observing dark matter via weak gravitational lensing. This first paper in a three part series outlines the survey strategies and relevant instrumental parameters for such a mission. As a concrete example of hardware design, we consider the proposed Supernova/Acceleration Probe (SNAP). Using SNAP engineering models, we quantify the major contributions to this telescope's Point Spread Function (PSF). These PSF contributions are relevant to any similar wide field space telescope. We further show that the PSF of SNAP or a similar telescope will be smaller than current ground-based PSFs, and more isotropic and stable over time than the PSF of the Hubble Space Telescope. We outline survey strategies for two different regimes - a "wide" 300 square degree survey and a "deep" 15 square degree survey that will accomplish various weak lensing goals including statistical studies and dark matter mapping.

The Supernova / Acceleration Probe (SNAP) is a proposed space-based
experiment designed to study the dark energy and alternative explanations of
the acceleration of the Universe's expansion by performing a series of
complementary systematics-controlled measurements. We describe a
self-consistent reference mission design for building a Type Ia supernova
Hubble diagram and for performing a wide-area weak gravitational lensing study.
A 2-m wide-field telescope feeds a focal plane consisting of a 0.7
square-degree imager tiled with equal areas of optical CCDs and near infrared
sensors, and a high-efficiency low-resolution integral field spectrograph. The
SNAP mission will obtain high-signal-to-noise calibrated light-curves and
spectra for several thousand supernovae at redshifts between z=0.1 and 1.7. A
wide-field survey covering one thousand square degrees resolves ~100 galaxies
per square arcminute. If we assume we live in a cosmological-constant-dominated
Universe, the matter density, dark energy density, and flatness of space can
all be measured with SNAP supernova and weak-lensing measurements to a
systematics-limited accuracy of 1%. For a flat universe, the
density-to-pressure ratio of dark energy can be similarly measured to 5% for
the present value w0 and ~0.1 for the time variation w'. The large survey area,
depth, spatial resolution, time-sampling, and nine-band optical to NIR
photometry will support additional independent and/or complementary dark-energy
measurement approaches as well as a broad range of auxiliary science programs.
(Abridged)