Numerical electromagnetic simulation of some systems containing charged particles with highly relativistic directed motion can by speeded up by orders of magnitude by choice of the proper Lorentz-boosted frame. A particularly good application for calculation in a boosted frame isthat of short wavelength free-electron lasers (FELs) where a high energy electron beam with small fractional energy spread interacts with a static magnetic undulator. In the optimal boost frame (i.e., the ponderomotive rest frame), the red-shifted FEL radiation and blue-shifted undulator field have identical wavelengths and the number of required longitudinal grid cells and time-steps for fully electromagnetic simulation (relative to the laboratory frame) decrease by factors of gamma^2 each. In theory, boosted frame EM codes permit direct study of FEL problems for which the eikonal approximation for propagation of the radiation field and wiggler-period-averaging for the particle-field interaction may be suspect. We have adapted the WARP code to apply this method to several electromagnetic FEL problems including spontaneous emission, strong exponential gain in a seeded, single pass amplifier configuration, and emission from e-beams in undulators with multiple harmonic components. WARP has a standard relativistic macroparticle mover and a fully 3-D electromagnetic field solver. We discuss our boosted frame results and compare with those obtained using the ?standard? eikonal FEL simulation approach.

# Your search: "author:"Fawley, William""

## filters applied

## Type of Work

Article (39) Book (0) Theses (0) Multimedia (0)

## Peer Review

Peer-reviewed only (3)

## Supplemental Material

Video (0) Audio (0) Images (0) Zip (0) Other files (0)

## Publication Year

## Campus

UC Berkeley (0) UC Davis (0) UC Irvine (0) UCLA (0) UC Merced (0) UC Riverside (0) UC San Diego (0) UCSF (0) UC Santa Barbara (0) UC Santa Cruz (0) UC Office of the President (0) Lawrence Berkeley National Laboratory (39) UC Agriculture & Natural Resources (0)

## Department

## Journal

## Discipline

## Reuse License

## Scholarly Works (39 results)

The oscillator package within the GINGER FEL simulation code has now been extended to include angle-dependent reflectivity properties of Bragg crystals. Previously, the package was modified to include frequencydependent reflectivity in order to model x-ray FEL oscillators from start-up from shot noise through to saturation. We present a summary of the algorithms used for modeling the crystal reflectivity and radiation propagation outside the undulator, discussing various numerical issues relevant to the domain of high Fresnel number and efficient Hankel transforms. We give some sample XFEL-O simulation results obtained with the angle-dependent reflectivity model, with particular attention directed to the longitudinal and transverse coherence of the radiation output.

Numerical simulation of some systems containing charged particles with highly relativistic directed motion can by speeded up by orders of magnitude by choice of the proper Lorentz-boosted frame[1] . A particularly good example is that of short wavelength free-electron lasers (FELs) in which a high energy electron beam interacts with a static magnetic undulator. In the optimal boost frame with Lorentz factor gamma_F , the red-shifted FEL radiation and blue shifted undulator have identical wavelengths and the number of required time-steps (presuming the Courant condition applies) decreases by a factor of 2(gamma_F)**2 for fully electromagnetic simulation. We have adapted the WARP code [2] to apply this method to several FEL problems involving coherent spontaneous emission (CSE) from pre-bunched ebeams, including that in a biharmonic undulator.

This is Version 1.3 of the manual for the free-electron laser simulation code GINGER and its post-processor.

Numerical simulation of some systems containing charged particles with highly relativistic directed motion can by speeded up by orders of magnitude by choice of the proper Lorentz-boosted frame. Orders of magnitude speedup has been demonstrated for simulations from first principles of laser-plasma accelerator, free electron laser, and particle beams interacting with electron clouds. Here we address the application of the Lorentz-boosted frame approach to coherent synchrotron radiation (CSR), which can be strongly present in bunch compressor chicanes. CSR is particularly relevant to the next generation of x-ray light sources and is simultaneously difficult to simulate in the lab frame because of the large ratio of scale lengths. It can increase both the incoherent and coherent longitudinal energy spread, effects that often lead to an increase in transverse emittance. We have adapted the WARP code to simulate CSR emission along a simple dipole bend. We present some scaling arguments for the possible computational speed up factor in the boosted frame and initial 3D simulation results.

Part of the overall design effort for x-ray FEL's such as the LCLS and TESLA projects has involved extensive use of particle simulation codes to predict their output performance and underlying sensitivity to various input parameters (e.g. electron beam emittance). This paper discusses some of the numerical issues that must be addressed by simulation codes in this regime. We first give a brief overview of the standard approximations and simulation methods adopted by time-dependent(i.e. polychromatic) codes such as GINGER, GENESIS, and FAST3D, including the effects of temporal discretization and the resultant limited spectral bandpass,and then discuss the accuracies and inaccuracies of these codes in predicting incoherent spontaneous emission (i.e. the extremely low gain regime).