# Your search: "author:"Linder, Eric""

## filters applied

## Type of Work

Article (22) Book (0) Theses (1) Multimedia (0)

## Peer Review

Peer-reviewed only (8)

## Supplemental Material

Video (0) Audio (0) Images (0) Zip (0) Other files (0)

## Publication Year

## Campus

UC Berkeley (2) UC Davis (0) UC Irvine (0) UCLA (0) UC Merced (0) UC Riverside (0) UC San Diego (1) UCSF (0) UC Santa Barbara (0) UC Santa Cruz (0) UC Office of the President (1) Lawrence Berkeley National Laboratory (22) UC Agriculture & Natural Resources (0)

## Department

Research Grants Program Office (RGPO) (1)

## Journal

## Discipline

Physical Sciences and Mathematics (1)

## Reuse License

## Scholarly Works (23 results)

X-ray cluster measurements interpreted with a universal baryon/gas mass fraction can theoretically serve as a cosmological distance probe. We examine issues of cosmological sensitivity for current (e.g., Chandra X-ray Observatory, XMM-Newton) and next generation (e.g., Con-X, XEUS) observations, along with systematic uncertainties and biases. To give competitive next generation constraints on dark energy, we find that systematics will need to be controlled to better than 1percent and any evolution in f_gas (and other cluster gas properties) must be calibrated so the residual uncertainty is weaker than (1+z)0.03.

Non-negligible dark energy density at high redshifts would indicate dark energy physics distinct from a cosmological constant or "reasonable'" canonical scalar fields. Such dark energy can be constrained tightly through investigation of the growth of structure, with limits of > 1 for many models. Intermediate dark energy can have effects distinct from its energy density; the dark ages acceleration can be constrained to last less than 5percent of a Hubble e-fold time, exacerbating the coincidence problem. Both the total linear growth, or equivalently sigma 8, and the shape and evolution of the nonlinear mass power spectrum for z<2 (using the Linder-White nonlinear mapping prescription) provide important windows. Probes of growth, such as weak gravitational lensing, can interact with supernovae and CMB distance measurements to scan dark energy behavior over the entire range z=0-1100.

The cosmic expansion history tests the dynamics of the global evolution of the universe and its energy density contents, while the cosmic growth history tests the evolution of the inhomogeneous part of the energy density. Precision comparison of the two histories can distinguish the nature of the physics responsible for the accelerating cosmic expansion: an additional smooth component - dark energy - or a modification of the gravitational field equations. With the aid of a new fitting formula for linear perturbation growth accurate to 0.05-0.2percent, we separate out the growth dependence on the expansion history and introduce a new growth index parameter \gamma that quantifies the gravitational modification.

For exploring the physics behind the accelerating universe a crucial question is how much we can learn about the dynamics through next generation cosmological experiments. For example, in defining the dark energy behavior through an effective equation of state, how many parameters can we realistically expect to tightly constrain? Through both general and specific examples (including new parametrizations and principal component analysis) we argue that the answer is 42 - no, wait, two. Cosmological parameter analyses involving a measure of the equation of state value at some epoch (e.g., w_0) and a measure of the change in equation of state (e.g., w') are therefore realistic in projecting dark energy parameter constraints. More elaborate parametrizations could have some uses (e.g., testing for bias or comparison with model features), but do not lead to accurately measured dark energy parameters.

A single parameter, the gravitational growth index gamma, succeeds in characterizing the growth of density perturbations in the linear regime separately from the effects of the cosmic expansion. The parameter is restricted to a very narrow range for models of dark energy obeying the laws of general relativity but can take on distinctly different values in models of beyond-Einstein gravity. Motivated by the parameterized post-Newtonian (PPN) formalism for testing gravity, we analytically derive and extend the gravitational growth index, or Minimal Modified Gravity, approach to parameterizing beyond-Einstein cosmology. The analytic formalism demonstrates how to apply the growth index parameter to early dark energy, time-varying gravity, DGP braneworld gravity, and some scalar-tensor gravity.