This dissertation advances the state of the art for scalable high-performance graph analytics and data mining using the language of linear algebra. Many graph computations suffer poor scalability due to their irregular nature and low operational intensity. A small but powerful set of linear algebra primitives that specifically target graph and data mining applications can expose sufficient coarse-grained parallelism to scale to thousands of processors.

In this dissertation we advance existing distributed memory approaches in two important ways. First, we observe that data scientists and domain experts know their analysis and mining problems well, but suffer from little HPC experience. We describe a system that presents the user with a clean API in a high-level language that scales from a laptop to a supercomputer with thousands of cores. We utilize a Domain-Specific Embedded Language with Selective Just-In-Time Specialization to ensure a negligible performance impact over the original distributed memory low-level code. The high-level language enables ease of use, rapid prototyping, and additional features such as on-the-fly filtering, runtime-defined objects, and exposure to a large set of third-party visualization packages.

The second important advance is a new sparse matrix data structure and set of algorithms. We note that shared memory machines are dominant both in stand-alone form and as nodes in distributed memory clusters. This thesis offers the design of a new sparse-matrix data structure and set of parallel algorithms, a reusable implementation in shared memory, and a performance evaluation that shows significant speed and memory usage improvements over competing packages. Our method also offers features such as in-memory compression, a low-cost transpose, and chained primitives that do not materialize the entire intermediate result at any one time. We focus on a scalable, generalized, sparse matrix-matrix multiplication algorithm. This primitive is used extensively in many graph algorithms such as betweenness centrality, graph clustering, graph contraction, and subgraph extraction.