Many properties of the Milky Way's dark matter halo, including its mass
assembly history, concentration, and subhalo population, remain poorly
constrained. We explore the connection between these properties of the Milky
Way and its satellite galaxy population, especially the implication of the
presence of the Magellanic Clouds for the properties of the Milky Way halo.
Using a suite of high-resolution $N$-body simulations of Milky Way-mass halos
with a fixed final Mvir ~ 10^{12.1}Msun, we find that the presence of
Magellanic Cloud-like satellites strongly correlates with the assembly history,
concentration, and subhalo population of the host halo, such that Milky
Way-mass systems with Magellanic Clouds have lower concentration, more rapid
recent accretion, and more massive subhalos than typical halos of the same
mass. Using a flexible semi-analytic galaxy formation model that is tuned to
reproduce the stellar mass function of the classical dwarf galaxies of the
Milky Way with Markov-Chain Monte-Carlo, we show that adopting host halos with
different mass-assembly histories and concentrations can lead to different
best-fit models for galaxy-formation physics, especially for the strength of
feedback. These biases arise because the presence of the Magellanic Clouds
boosts the overall population of high-mass subhalos, thus requiring a different
stellar-mass-to-halo-mass ratio to match the data. These biases also lead to
significant differences in the mass--metallicity relation, the kinematics of
low-mass satellites, the number counts of small satellites associated with the
Magellanic Clouds, and the stellar mass of Milky Way itself. Observations of
these galaxy properties can thus provide useful constraints on the properties
of the Milky Way halo.