Connections on principal bundles play a fundamental role in expressing the
equations of motion for mechanical systems with symmetry in an intrinsic
fashion. A discrete theory of connections on principal bundles is constructed
by introducing the discrete analogue of the Atiyah sequence, with a connection
corresponding to the choice of a splitting of the short exact sequence.
Equivalent representations of a discrete connection are considered, and an
extension of the pair groupoid composition, that takes into account the
principal bundle structure, is introduced. Computational issues, such as the
order of approximation, are also addressed. Discrete connections provide an
intrinsic method for introducing coordinates on the reduced space for discrete
mechanics, and provide the necessary discrete geometry to introduce more
general discrete symmetry reduction. In addition, discrete analogues of the
Levi-Civita connection, and its curvature, are introduced by using the
machinery of discrete exterior calculus, and discrete connections.