One of the options considered for future upgrades of the
LHC injector complex entails the replacement of the PS
with the PS2, a longer circumference and higher energy
synchrotron. Electron cloud effects represent an important
potential limitation to the achievement of the upgrade
goals. We report the results of numerical studies aiming
at estimating the e-cloud density thresholds for the occurrence
of single bunch instabilities.

One of the proposals under consideration for future upgrades of the LHC injector complex entails the replacement of the PS with the PS2, a longer circumference and higher energy synchrotron, with electron cloud effects representing a potentially serious limitation to the achievement of the upgrade goals. We report on ongoing numerical studies aiming at estimating the e-cloud density threshold for the occurrence of single bunch instabilities.

We report on on-going studies of a superconducting CW linac driver intended to support a high repetition rate FEL
operating in the soft x-rays spectrum. We present a pointdesign for a 1.8 GeV machine tuned for 300 pC bunches and delivering low-emittance, low-energy spread beams as needed for the SASE and seeded beamlines.

Velocity bunching (or RF compression) represents a promising technique complementary to magnetic compression to achieve the high peak current required in the linac drivers for FELs. Here we report on recent progress aimed at characterizing the RF compression from the point of view of the microbunching instability. We emphasize the development of a linear theory for the gain function of the instability and its validation against macroparticle simulations that represents a useful tool in the evaluation of the compression schemes for FEL sources.

The effect of rf harmonic cavities on the transverse mode-coupling instability (TMCI) is still not very well understood. We offer a fresh perspective on the problem by proposing a new numerical method for mode analysis and investigating a regime of potential interest to the new generation of light sources where resistive wall is the dominant source of transverse impedance. When the harmonic cavities are tuned for maximum flattening of the bunch profile we demonstrate that at vanishing chromaticities the transverse single-bunch motion is unstable at any current, with growth rate that in the relevant range scales as the 6th power of the current. With these assumptions and radiation damping included, we find that for machine parameters typical of 4th-generation light sources the presence of harmonic cavities could reduce the instability current threshold by more than a factor two.

We introduce a perturbation-theory, mode-analysis method for longitudinal multibunch instabilities driven by the higher harmonic cavity (HHC) fundamental mode. The method, based on the exact solution of the unperturbed particle motion in the rf bucket and suitable for modeling the effect of cavities with general settings, is applied to study the feasibility of reutilizing the existing Advanced Light Source (ALS) HHCs in the ALS Upgrade (ALS-U). We find that with ALS cavities the ALS-U would be susceptible to a fast =1 mode instability. Interestingly, the instability is driven by the imaginary rather than the real part of the cavity fundamental-mode impedance.

Using a 1D steady-state free-space coherent synchrotron radiation (CSR) model, we identify a special design setting for a triple-bend isochronous achromat that yields vanishing emittance growth from CSR. When a more refined CSR model with transient effects is included in the analysis, numerical simulations show that the main effect of the transients is to shift the emittance growth minimum slightly, with the minimum changing only modestly.

We study the effect of a passive harmonic cavity, introduced to cause bunch lengthening, in an electron storage ring. We derive a formula for the induced voltage from such a cavity with high Q, excited by a sequence of bunches, allowing for arbitrary gaps in the sequence and arbitrary currents. Except for a minor term that can be determined iteratively, the voltage is given in terms of a single mode of the Fourier transforms of the bunch forms, namely, the mode at the resonant frequency of the cavity. Supposing that the only wakefield is from the harmonic cavity, we derive a system of coupled Haïssinski equations which determine the bunch positions and profiles in the equilibrium state. The number of unknowns in the system is only twice the number of bunches, and it can be solved quickly by a Newton iteration, starting with a guess determined by path following from a solution at a weak current. We explore the effect of the fill pattern on the bunch lengthening and also the dependence on the shunt impedance and detuning of the cavity away from the third harmonic of the main accelerating cavity. We consider two measures to reduce the effects of gaps: (i) distribution of the gaps around the ring to the greatest extent allowed and (ii) "guard bunches"with higher charges adjacent to the gaps, compensating for the charge missing in gaps. Results for parameters of the forthcoming Advanced Light Source upgrade are presented.