This presentation reports on first evidence for a low-mass-density/positive-cosmological-constant universe that will expand forever, based on observations of a set of 40 high-redshift supernovae. The experimental strategy, data sets, and analysis techniques are described.

Skip to main contentRefine Results Back to Results From: To: Apply Sort By: Relevance A-Z By Title Z-A By Title A-Z By Author Z-A By Author Date Ascending Date Descending

## Type of Work

Article (4) Book (0) Theses (0) Multimedia (0)

## Peer Review

Peer-reviewed only (2)

## Supplemental Material

Video (0) Audio (0) Images (0) Zip (0) Other files (0)

## Publication Year

## Campus

UC Berkeley (2) UC Davis (0) UC Irvine (0) UCLA (0) UC Merced (0) UC Riverside (0) UC San Diego (0) UCSF (0) UC Santa Barbara (0) UC Santa Cruz (0) UC Office of the President (2) Lawrence Berkeley National Laboratory (4) UC Agriculture & Natural Resources (0)

## Department

Nobel Laureates of the University of California (2) Research Grants Program Office (RGPO) (2)

## Journal

## Discipline

## Reuse License

## Scholarly Works (4 results)

Recent Work (1999)

We report measurements of the mass density, Omega_M, and
cosmological-constant energy density, Omega_Lambda, of the universe based on
the analysis of 42 Type Ia supernovae discovered by the Supernova Cosmology
Project. The magnitude-redshift data for these SNe, at redshifts between 0.18
and 0.83, are fit jointly with a set of SNe from the Calan/Tololo Supernova
Survey, at redshifts below 0.1, to yield values for the cosmological
parameters. All SN peak magnitudes are standardized using a SN Ia lightcurve
width-luminosity relation. The measurement yields a joint probability
distribution of the cosmological parameters that is approximated by the
relation 0.8 Omega_M - 0.6 Omega_Lambda ~= -0.2 +/- 0.1 in the region of
interest (Omega_M <~ 1.5). For a flat (Omega_M + Omega_Lambda = 1) cosmology we
find Omega_M = 0.28{+0.09,-0.08} (1 sigma statistical) {+0.05,-0.04}
(identified systematics). The data are strongly inconsistent with a Lambda = 0
flat cosmology, the simplest inflationary universe model. An open, Lambda = 0
cosmology also does not fit the data well: the data indicate that the
cosmological constant is non-zero and positive, with a confidence of P(Lambda >
0) = 99%, including the identified systematic uncertainties. The best-fit age
of the universe relative to the Hubble time is t_0 = 14.9{+1.4,-1.1} (0.63/h)
Gyr for a flat cosmology. The size of our sample allows us to perform a variety
of statistical tests to check for possible systematic errors and biases. We
find no significant differences in either the host reddening distribution or
Malmquist bias between the low-redshift Calan/Tololo sample and our
high-redshift sample. The conclusions are robust whether or not a
width-luminosity relation is used to standardize the SN peak magnitudes.

Recent Work (1998)

The ultimate fate of the Universe, infinite expansion or a big crunch, can be determined by using the redshifts and distances of very distant supernovae to monitor changes in the expansion rate. We can now find large numbers of these distant supernovae, and measure their redshifts and apparent brightnesses; moreover, recent studies of nearby type Ia supernovae have shown how to determine their intrinsic luminosities- and therefore with their apparent brightnesses obtain their distances. The >50 distant supernovae discovered so far provide a record of changes in the expansion rate over the past several billion years. However, it is necessary to extend this expansion history still farther away (hence further back in time) in order to begin to distinguish the causes of he expansion-rate changes-such as the slowing caused by the gravitational attraction of the Universe's mass density, and the possibly counteracting effect of the cosmological constant. Here we report the most distant spectroscopically confirmed supernova. Spectra and photometry from the largest telescopes on the ground and in space show that this ancient supernova is strikingly similar to nearby, recent type Ia supernovae. When combined with previous measurements of nearer supernovae, these new measurements suggest that we may live in a low-mass-density universe.

Recent Work (2005)