In a recent communication, Weber and co-workers presented a surprising study
on charge-localization effects in the N,N'-dimethylpiperazine (DMP+) diamine
cation to provide a stringent test of density functional theory (DFT) methods.
Within their study, the authors examined various DFT methods and concluded that
"all DFT functionals commonly used today, including hybrid functionals with
exact exchange, fail to predict a stable charge-localized state." This
surprising conclusion is based on the authors' use of a self-interaction
correction (namely, complex-valued Perdew-Zunger Self-Interaction Correction
(PZ-SIC)) to DFT, which appears to give excellent agreement with experiment and
other wavefunction-based benchmarks. Since the publication of this recent
communication, the same DMP+ molecule has been cited in numerous subsequent
studies as a prototypical example of the importance of self-interaction
corrections for accurately calculating other chemical systems. In this
correspondence, we have carried out new high-level CCSD(T) analyses on the DMP+
cation to show that DFT actually performs quite well for this system (in
contrast to their conclusion that all DFT functionals fail), whereas the PZ-SIC
approach used by Weber et al. is the outlier that is inconsistent with the
high-level CCSD(T) (coupled-cluster with single and double excitations and
perturbative triples) calculations. Our new findings and analysis for this
system are briefly discussed in this correspondence.