© 2014 IEEE. In this paper, we report Q -factor over 1 million on both n=2 wineglass modes, and high-frequency symmetry (Δ f/f ) of 132 ppm on wafer-level microglassblown 3-D fused silica wineglass resonators at a compact size of 7-mm diameter and center frequency of 105 kHz. In addition, we demonstrate for the first time, out-of-plane capacitive transduction on microelectromechanical systems wineglass resonators. High Q -factor is enabled by a high aspect ratio, self-aligned glassblown stem structure, careful surface treatment of the perimeter area, and low internal loss fused silica material. Electrostatic transduction is enabled by detecting the spatial deformation of the 3-D wineglass structure using a new out-of-plane electrode architecture. Out-of-plane electrode architecture enables the use of sacrificial layers to define the capacitive gaps and 10 μm capacitive gaps have been demonstrated on a 7-mm shell, resulting in over 9 pF of active capacitance within the device. Microglassblowing may enable batch-fabrication of high-performance fused silica wineglass gyroscopes at a significantly lower cost than their precision-machined macroscale counterparts. [2014-0251]