- Liu, J;
- Heinsen, H;
- Grinberg, LT;
- Alho, E;
- Amaro, E;
- Pasqualucci, CA;
- Rüb, U;
- Seidel, K;
- Dunnen, W den;
- Arzberger, T;
- Schmitz, C;
- Kiessling, MC;
- Bader, B;
- Danek, A
AIMS:Quantitative estimation of cortical neurone loss in cases with chorea-acanthocytosis (ChAc) and its impact on laminar composition. METHODS:We used unbiased stereological tools to estimate the degree of cortical pathology in serial gallocyanin-stained brain sections through the complete hemispheres of three subjects with genetically verified ChAc and a range of disease durations. We compared these results with our previous data of five Huntington's disease (HD) and five control cases. Pathoarchitectonic changes were exemplarily documented in TE1 of a 61-year-old female HD-, a 60-year-old female control case, and ChAc3. RESULTS:Macroscopically, the cortical volume of our ChAc cases (ChAc1-3) remained close to normal. However, the average number of neurones was reduced by 46% in ChAc and by 33% in HD (P = 0.03 for ChAc & HD vs. controls; P = 0.64 for ChAc vs. HD). Terminal HD cases featured selective laminar neurone loss with pallor of layers III, V and VIa, a high density of small, pale, closely packed radial fibres in deep cortical layers VI and V, shrinkage, and chromophilia of subcortical white matter. In ChAc, pronounced diffuse astrogliosis blurred the laminar borders, thus masking the complete and partial loss of pyramidal cells in layer IIIc and of neurones in layers III, V and VI. CONCLUSION:ChAc is a neurodegenerative disease with distinct cortical neurodegeneration. The hypertrophy of the peripheral neuropil space of minicolumns with coarse vertical striation was characteristic of ChAc. The role of astroglia in the pathogenesis of this disorder remains to be elucidated.