- Rankin, Carl Robert;
- Shao, Ling;
- Elliott, Julie;
- Rowe, Lorraine;
- Patel, Ami;
- Videlock, Elizabeth;
- Benhammou, Jihane N;
- Sauk, Jenny S;
- Ather, Nimah;
- Corson, Melissa;
- Alipour, Omeed;
- Gulati, Alakh;
- Pothoulakis, Charalabos;
- Padua, David Miguel
The inflammatory bowel diseases (IBD) are a complex set of chronic gastrointestinal inflammatory conditions arising from the interplay of genetic and environmental factors. This study focuses on noncoding RNA transcripts as potential mediators of IBD pathophysiology. One particular gene, interferon γ-antisense 1 (IFNG-AS1), has been consistently observed to be elevated in the intestinal mucosa of patients with actively inflamed IBD versus healthy controls. This study builds on these observations, demonstrating that the second splice variant is specifically altered, and this alteration even stratifies within inflamed patients. With the use of a CRISPR-based overexpression system, IFNG-AS1 was selectively overexpressed directly from its genomic loci in T cells. An unbiased mRNA array on these cells identified a large increase in many inflammatory cytokines and a decrease in anti-inflammatory cytokines after IFNG-AS1 overexpression. Media from T cells overexpressing IFNG-AS1 elicited an inflammatory signaling cascade in primary human peripheral blood mononuclear cells, suggesting the potential functional importance of IFNG-AS1 in IBD pathophysiology. The significance of these results is amplified by studies suggesting that a single-nucleotide polymorphism in IFNG-AS1, rs7134599, was associated with both subtypes of patients with IBD independently of race.NEW & NOTEWORTHY Long noncoding RNAs are an emerging field of inflammatory bowel disease (IBD) research. This study mechanistically analyzes the role of a commonly upregulated gene in IBD and shows IFNG-AS1 as a mediator of an inflammatory signaling cascade.