We have investigated nucleotide polymorphism in the Est-6 gene region in four samples of Drosophila melanogaster derived from natural populations of East Africa (Zimbabwe), Europe (Spain), North America (California), and South America (Venezuela). There are two divergent sequence types in the North and South American samples, which are not perfectly (North America) or not at all (South America) associated with the Est-6 allozyme variation. Less pronounced or no sequence dimorphism occurs in the European and African samples, respectively. The level of nucleotide diversity is highest in the African sample, lower (and similar to each other) in the samples from Europe and North America, and lowest in the sample from South America. The extent of linkage disequilibrium is low in Africa (1.23% significant associations), but much higher in non-African populations (22.59, 21.45, and 37.68% in Europe, North America, and South America, respectively). Tests of neutrality with recombination are significant in non-African samples but not significant in the African sample. We propose that demographic history (bottleneck and admixture of genetically different populations) is the major factor shaping the nucleotide patterns in the Est-6 gene region. However, positive selection modifies the pattern: balanced selection creates elevated levels of nucleotide variation around functionally important (target) polymorphic sites (RsaI-/RsaI+ in the promoter region and F/S in the coding region) in both African and non-African samples; and directional selection, acting during the geographic expansion phase of D. melanogaster, creates an excess of very similar sequences (RsaI- and S allelic lineages, in the promoter and coding regions, respectively) in the non-African samples.