Background
Deregulation of RNA editing by adenosine deaminases acting on dsRNA (ADARs) has been implicated in the progression of diverse human cancers including hematopoietic malignancies such as chronic myeloid leukemia (CML). Inflammation-associated activation of ADAR1 occurs in leukemia stem cells specifically in the advanced, often drug-resistant stage of CML known as blast crisis. However, detection of cancer stem cell-associated RNA editing by RNA sequencing in these rare cell populations can be technically challenging, costly and requires PCR validation. The objectives of this study were to validate RNA editing of a subset of cancer stem cell-associated transcripts, and to develop a quantitative RNA editing fingerprint assay for rapid detection of aberrant RNA editing in human malignancies.Methods
To facilitate quantification of cancer stem cell-associated RNA editing in exons and intronic or 3'UTR primate-specific Alu sequences using a sensitive, cost-effective method, we established an in vitro RNA editing model and developed a sensitive RNA editing fingerprint assay that employs a site-specific quantitative PCR (RESSq-PCR) strategy. This assay was validated in a stably-transduced human leukemia cell line, lentiviral-ADAR1 transduced primary hematopoietic stem and progenitor cells, and in primary human chronic myeloid leukemia stem cells.Results
In lentiviral ADAR1-expressing cells, increased RNA editing of MDM2, APOBEC3D, GLI1 and AZIN1 transcripts was detected by RESSq-PCR with improved sensitivity over sequencing chromatogram analysis. This method accurately detected cancer stem cell-associated RNA editing in primary chronic myeloid leukemia samples, establishing a cancer stem cell-specific RNA editing fingerprint of leukemic transformation that will support clinical development of novel diagnostic tools to predict and prevent cancer progression.Conclusions
RNA editing quantification enables rapid detection of malignant progenitors signifying cancer progression and therapeutic resistance, and will aid future RNA editing inhibitor development efforts.