- Kaplan, Amber;
- Lee, Michelle W;
- Wolf, Andrea J;
- Limon, Jose J;
- Becker, Courtney A;
- Ding, Minna;
- Murali, Ramachandran;
- Lee, Ernest Y;
- Liu, George Y;
- Wong, Gerard CL;
- Underhill, David M
Type I IFNs are a cytokine family essential for antiviral defense. More recently, type I IFNs were shown to be important during bacterial infections. In this article, we show that, in addition to known cytokine functions, IFN-β is antimicrobial. Parts of the IFN-β molecular surface (especially helix 4) are cationic and amphipathic, both classic characteristics of antimicrobial peptides, and we observed that IFN-β can directly kill Staphylococcus aureus Further, a mutant S. aureus that is more sensitive to antimicrobial peptides was killed more efficiently by IFN-β than was the wild-type S. aureus, and immunoblotting showed that IFN-β interacts with the bacterial cell surface. To determine whether specific parts of IFN-β are antimicrobial, we synthesized IFN-β helix 4 and found that it is sufficient to permeate model prokaryotic membranes using synchrotron x-ray diffraction and that it is sufficient to kill S. aureus These results suggest that, in addition to its well-known signaling activity, IFN-β may be directly antimicrobial and be part of a growing family of cytokines and chemokines, called kinocidins, that also have antimicrobial properties.