Advances in technology and computing hardware are enabling scientists from
all areas of science to produce massive amounts of data using large-scale
simulations or observational facilities. In this era of data deluge, effective
coordination between the data production and the analysis phases hinges on the
availability of metadata that describe the scientific datasets. Existing
workflow engines have been capturing a limited form of metadata to provide
provenance information about the identity and lineage of the data. However,
much of the data produced by simulations, experiments, and analyses still need
to be annotated manually in an ad hoc manner by domain scientists. Systematic
and transparent acquisition of rich metadata becomes a crucial prerequisite to
sustain and accelerate the pace of scientific innovation. Yet, ubiquitous and
domain-agnostic metadata management infrastructure that can meet the demands of
extreme-scale science is notable by its absence.
To address this gap in scientific data management research and practice, we
present our vision for an integrated approach that (1) automatically captures
and manipulates information-rich metadata while the data is being produced or
analyzed and (2) stores metadata within each dataset to permeate
metadata-oblivious processes and to query metadata through established and
standardized data access interfaces. We motivate the need for the proposed
integrated approach using applications from plasma physics, climate modeling
and neuroscience, and then discuss research challenges and possible solutions.