- Kogelmann, Benjamin;
- Melnik, Stanislav;
- Bogner, Michaela;
- Kallolimath, Somanath;
- Stöger, Eva;
- Sun, Lin;
- Strasser, Richard;
- DAoust, Marc-André;
- Lavoie, Pierre-Olivier;
- Saxena, Pooja;
- Gach, Johannes;
- Steinkellner, Herta
Control over glycosylation is an important quality parameter in recombinant protein production. Here, we demonstrate the generation of a marker-free genome edited Nicotiana benthamiana N-glycosylation mutant (NbXF-KO) carrying inactivated β1,2-xylosyltransferase and α1,3-fucosyltransferase genes. The knockout of seven genes and their stable inheritance was confirmed by DNA sequencing. Mass spectrometric analyses showed the synthesis of N-glycans devoid of plant-specific β1,2-xylose and core α 1,3-fucose on endogenous proteins and a series of recombinantly expressed glycoproteins with different complexities. Further transient glycan engineering towards more diverse human-type N-glycans resulted in the production of recombinant proteins decorated with β1,4-galactosylated and α2,6-sialylated structures, respectively. Notably, a monoclonal antibody expressed in the NbXF-KO displayed glycosylation-dependent activities. Collectively, the engineered plants grow normally and are well suited for upscaling, thereby meeting industrial and regulatory requirements for the production of high-quality therapeutic proteins.