We report on several methods for synthesizing the ultra-fast scintillator ZnO(Ga), and measurements of the resulting products. This material has characteristics that make it an excellent alpha detector for tagging the time and direction of individual neutrons produced by t-d and d-d neutron generators (associated particle imaging). The intensity and decay time are strongly dependent on the method used for dopant incorporation. We compare samples made by diffusion of Ga metal to samples made by solid state reaction between ZnO and Ga2O3 followed by reduction in hydrogen. The latter is much more successful and has a pure, strong near-band-edge fluorescence and an ultra-fast decay time of the x-ray-excited luminescence. The luminescence increases dramatically as the temperature is reduced to 10K. We also present results of an alternate low-temperature synthesis that produces luminescent particles with a more uniform size distribution. We examine possible mechanisms for the bright near-band-edge scintillation and favor the explanation that it is due to the recombination of Ga3+ donor electrons with ionization holes trapped on H+ ion acceptors.
The scintillation properties of BaBrI:Eu2+ are reported. Crystals were produced by the vertical Bridgman technique in a sealed quartz ampoule. Excellent scintillation properties were measured. A light yield of 81,0007 +- 3000 photons per MeV (ph/MeV) of absorbed gamma-ray energy was measured. An energy resolution (FWHM over peak position) of 4.870.5percent was observed for the 662keV full absorption peak. Pulsed X-ray luminescence measurements show two exponential decay components of 297 and 482 ns with a contribution to the total light output of 23percent and 77percent, respectively. Under X-ray and UV excitation, the emission corresponds to a broadband center at 413 nm. These initial values make BaBrI:Eu2+ one of the brightest and the fastest known Eu2+ doped scintillators.
Cookie SettingseScholarship uses cookies to ensure you have the best experience on our website. You can manage which cookies you want us to use.Our Privacy Statement includes more details on the cookies we use and how we protect your privacy.