Auditory and somatosensory white noise can stabilize standing balance. However, the differential effects of auditory and tactile noise stimulation on balance are unknown. Prior work on unimodal noise stimulation showed gains in balance with white noise through the auditory and tactile modalities separately. The current study aims to examine whether multimodal noise elicits similar responses to unimodal noise. We recorded the postural sway of healthy young adults who were presented with continuous white noise through the auditory or tactile modalities and through a combination of both (multimodal condition) using a wearable device. Our results replicate previous work that showed that auditory or tactile noise reduces sway variability with and without vision. Additionally, we show that multimodal noise also reduces the variability of sway. Analysis of different frequency bands of sway is typically used to separate open-loop exploratory (< 0.3 Hz) and feedback-driven (> 0.3 Hz) sway. We performed this analysis and showed that unimodal and multimodal white noise affected postural sway variability similarly in both timescales. These results support that the sensory noise effects on balance are robust across unimodal and multimodal conditions and can affect both mechanisms of sway represented in the frequency spectrum. In future work, the parameters of acoustic/tactile manipulation should be optimized for the most effective balance stabilization, and multimodal therapies should be explored for older adults with typical age-related balance instabilities.