Mountain shrublands are widespread habitats of the European Alps. Shrub encroachment into above treeline grazed lands profoundly modifies biodiversity and ecosystem functioning. Yet, mountain shrublands remain overlooked in vegetation distribution modeling because it is difficult to distinguish them from productive grasslands. Here, we used the pigment-sensitive spectral indices based on Sentinel-2 bands within a specific phenological window, to produce a high-resolution distribution map of mountain shrublands in the French Alps. We evaluated the performance of our classification using a large dataset of vegetation plots and found that our model is highly sensitive to Ericaceous species which constitute most of the dense alpine shrublands in the French Alps. Our analysis of topoclimatic and land use factors limiting the shrubland distribution at regional scale found that, consistent with the ecophysiology of shrubs, expansion is limited by a combination of water deficit and temperature. We discussed the past and current land-use implications in the observed distribution and put forward hypotheses combining climate and land-use trajectories. Our work provides a baseline for monitoring mountain shrub dynamics and exploring the response of shrublands to past and ongoing climate and land use changes.