- Kao, Li Cheng;
- Ha, Yang;
- Chang, Wan-Jou;
- Feng, Xuefei;
- Ye, Yifan;
- Chen, Jeng-Lung;
- Pao, Chih-Wen;
- Yang, Feipeng;
- Zhu, Catherine;
- Yang, Wanli;
- Guo, Jinghua;
- Liou, Sofia Ya Hsuan
Nanoscale zerovalent iron (nZVI) is considered as a highly efficient material for sequestrating arsenite, but the origin of its high efficacy as well as the chemical transformations of arsenite during reaction is not well understood. Here, we report an in situ X-ray absorption spectroscopy (XAS) study to investigate the complex mechanism of nZVI reaction with arsenite under anaerobic conditions at the time scale from seconds to days. The time-resolved XAS analysis revealed a gradual oxidation of AsIII to AsV in the course of minutes to hours in both the solid and liquid phase for the high (above 0.5 g/L) nZVI dose system. When the reaction time increased up to 60 days, AsV became the dominant species. The quick-scanning extended X-ray absorption fine structure (QEAXFS) was introduced to discover the transient intermediate at the highly reactive stage, and a small red-shift in As K-edge absorption edge was observed. The QEAXFS combined with density functional theory (DFT) calculation suggested that the red-shift is likely due to the electron donation in a Fe-O-As complex and possible active sites of As sequestrations include Fe(OH)4 and 4-Fe cluster. This is the first time that the transient reaction intermediate was identified in the As-nZVI sequestration system at the fast-reacting early stage. This study also demonstrated usefulness of in situ monitoring techniques in environmental water research.