Background
Moderate-vigorous physical activity (MVPA) offers extensive health benefits but is neglected by many. As a result, a wide body of research investigating physical activity behavior change has been conducted. As many of these studies transition from paper-based methods of MVPA data collection to fitness trackers, a series of challenges arise in extracting insights from these new data.Objective
The objective of this research was to develop a framework for preprocessing and extracting MVPA trends from wearable fitness tracker data to support MVPA behavior change studies.Methods
Using heart rate data collected from fitness trackers, we propose Physical Activity Trend eXtraction (PATX), a framework that imputes missing data, recalculates personalized target heart zones, and extracts MVPA trends. We tested our framework on a dataset of 123 college study participants observed across 2 academic years (18 months) using Fitbit Charge HRs. To demonstrate the value of our frameworks' output in supporting MVPA behavior change studies, we applied it to 2 case studies.Results
Among the 123 participants analyzed, PATX labeled 41 participants as experiencing a significant increase in MVPA and 44 participants who experienced a significant decrease in MVPA, with significance defined as P<.05. Our first case study was consistent with previous works investigating the associations between MVPA and mental health. Whereas the second, exploring how individuals perceive their own levels of MVPA relative to their friends, led to a novel observation that individuals were less likely to notice changes in their own MVPA when close ties in their social network mimicked their changes.Conclusions
By providing meaningful and flexible outputs, PATX alleviates data concerns common with fitness trackers to support MVPA behavior change studies as they shift to more objective assessments of MVPA.