Many insects can detect carbon dioxide (CO2) plumes using a conserved receptor made up of members of the gustatory receptor (Gr) family Gr1, Gr2 and Gr3. Mosquitoes are attracted to host animals for blood meals using plumes of CO2 in the exhaled breath using the receptor expressed in the A neuron of the capitate peg sensilla type on the maxillary palps. The receptor is known to also detect several other classes of odorants, including ones emitted from human skin. Here, we discover that a common skin odorant, butyric acid, can cause a phasic activation followed by an unusually prolonged tonic activity after the stimulus is over in the CO2 neurons of mosquitoes. The effect is conserved in both Aedes aegypti and Anopheles gambiae mosquitoes. This raises a question about its role in a mosquito's preference for the skin odour of different individuals. Butyric acid belongs to a small number of odorants known to cause the prolonged activation of the CO2 receptor. A chemical informatic analysis identifies a specific set of physico-chemical features that can be used in a machine learning predictive model for the prolonged activators. Interestingly, this set is different from physico-chemical features selected for activators or inhibitors, indicating that each has a distinct structural basis. The structural understanding opens up an opportunity to find novel ligands to manipulate the CO2 receptor and mosquito behaviour.