- Cao, Danni;
- Huang, Peng;
- Chiu, Yi-Ting;
- Chen, Chongguang;
- Wang, Huiqun;
- Li, Mengchu;
- Zheng, Yi;
- Ehlert, Frederick J;
- Zhang, Yan;
- Liu-Chen, Lee-Yuan
Nalfurafine, a moderately selective kappa opioid receptor (KOR) agonist, is used in Japan for treatment of itch without causing dysphoria or psychotomimesis. Here we characterized the pharmacology of compound 42B, a 3-dehydroxy analogue of nalfurafine and compared with that of nalfurafine. Nalfurafine and 42B acted as full KOR agonists and partial μ opioid receptor (MOR) agonists, but 42B showed much lower potency for both receptors and lower KOR/MOR selectivity, different from previous reports. Molecular modeling revealed that water-mediated hydrogen-bond formation between 3-OH of nalfurafine and KOR accounted for its higher KOR potency than 42B. The higher potency of both at KOR over MOR may be due to hydrogen-bond formation between nonconserved Y7.35 of KOR and their carbonyl groups. Both showed modest G protein signaling biases. In mice, like nalfurafine, 42B produced antinociceptive and antiscratch effects and did not cause conditioned place aversion (CPA) in the effective dose ranges. Unlike nalfurafine, 42B caused motor incoordination and hypolocomotion. As both agonists showed G protein biases, yet produced different effects on locomotor activity and motor incoordination, the findings and those in the literature suggest caution in correlating in vitro biochemical data with in vivo behavior effects. The factors contributing to the disconnect, including pharmacodynamic and pharmacokinetic issues, are discussed. In addition, our results suggest that among the KOR-induced adverse behaviors, CPA can be separated from motor incoordination and hypolocomotion.