One reason for the poor pitch performance in current cochlear-implant users may be the highly synchronized neural firing in electric hearing that lacks stochastic properties of neural firing in normal acoustic hearing. This study used three different electric stimulation patterns, jittered, probabilistic, and auditory-model-generated pulses, to mimic some aspects of the normal neural firing pattern in acoustic hearing. Pitch discrimination was measured at standard frequencies of 100, 250, 500, and 1000 Hz on three Nucleus-24 cochlear-implant users. To test the utility of the autocorrelation pitch perception model in electric hearing, one, two, and four electrodes were stimulated independently with the same patterned electric stimulation. Results showed no improvement in performance with any experimental pattern compared to the fixed-rate control. Pitch discrimination was actually worsened with the jittered pattern at low frequencies (125 and 250 Hz) than that of the control, suggesting that externally introduced stochastic properties do not improve pitch perception in electric stimulation. The multiple-electrode stimulation did not improve performance but did not degrade performance either. The present results suggest that both "the right time and the right place" may be needed to restore normal pitch perception in cochlear-implant users. (c) 2005 Acoustical Society of America.