Biotic resistance is the ability of native communities to repel the establishment of invasive species. Predation by native species may confer biotic resistance to communities, but the environmental context under which this form of biotic resistance occurs is not well understood. We evaluated several factors that influence the distribution of invasive Asian mussels (Musculista senhousia) in Mission Bay, a southern California estuary containing an extensive eelgrass (Zostera marina) habitat. Asian mussels exhibit a distinct spatial pattern of invasion, with extremely high densities towards the back of Mission Bay (up to 4,000 m−2) in contrast with near-complete absence at sites towards the front of the bay. We established that recruits arrived at sites where adult mussels were absent and found that dense eelgrass does not appear to preclude Asian mussel growth and survival. Mussel survival and growth were high in predator-exclusion plots throughout the bay, but mussel survival was low in the front of the bay when plots were open to predators. Additional experiments revealed that consumption by spiny lobsters (Panulirus interruptus) and a gastropod (Pteropurpura festiva) likely are the primary factors responsible for resistance to Asian mussel invasion. However, biotic resistance was dependent on location within the estuary (for both species) and also on the availability of a hard substratum (for P. festiva). Our findings indicate that biotic resistance in the form of predation may be conferred by higher order predators, but that the strength of resistance may strongly vary across estuarine gradients and depend on the nature of the locally available habitat.