Predicting and organizing patterns of events is important for humans to survive in a dynamically changing world. The motor system has been proposed to be actively, and necessarily, engaged in not only the production but the perception of rhythm by organizing hierarchical timing that influences auditory responses. It is not yet well understood how the motor system interacts with the auditory system to perceive and maintain hierarchical structure in time. This study investigated the dynamic interaction between auditory and motor functional sources during the perception and imagination of musical meters. We pursued this using a novel method combining high-density EEG, EMG, and motion capture with independent component analysis to separate motor and auditory activity during meter imagery while robustly controlling against covert movement. We demonstrated that endogenous brain activity in both auditory and motor functional sources reflects the imag- ination of binary and ternary meters in the absence of corresponding acoustic cues or overt movement at the meter rate. We found clear evidence for hypothesized motor-to-auditory information flow at the beat rate in all conditions, suggesting a role for top-down influence of the motor system on auditory processing of beat-based rhythms, and reflecting an auditory-motor system with tight reciprocal informational coupling. These findings align with and further extend a set of motor hypotheses from beat perception to hierarchical meter imagination, adding supporting evidence to active engagement of the motor sys- tem in auditory processing, which may more broadly speak to the neural mechanisms of temporal processing in other human cognitive functions.