Purpose
Evaluate efficacy and toxicity of salvage high-dose-rate brachytherapy (HDRB) for locally recurrent prostate cancer after definitive radiation therapy (RT).Methods and materials
We retrospectively analyzed 52 consecutively accrued patients undergoing salvage HDRB between 1998 and 2009 for locally recurrent prostate cancer after previous definitive RT. After pathologic confirmation of locally recurrent disease, patients received 36 Gy in 6 fractions. Twenty-four patients received neoadjuvant hormonal therapy before salvage, and no patients received adjuvant hormonal therapy. Determination of biochemical failure after salvage HDRB was based on the Phoenix definition. Overall survival (OS) and bF distributions were calculated using the Kaplan-Meier method. Univariate analyses were performed to identify predictors of biochemical control. Acute and late genitourinary (GU) and gastrointestinal (GI) toxicities, based on Common Terminology Criteria for Adverse Events (version 4), were documented.Results
Median follow-up after salvage HDRB was 59.6 months. The 5-year OS estimate was 92% (95% confidence interval [CI]: 80%-97%) with median survival not yet reached. Five-year biochemical control after salvage was 51% (95% CI: 34%-66%). Median PSA nadir postsalvage was 0.1 (range: 0-7.2) reached at a median of 10.2 months after completing HDRB. As for complications, acute and late grade 3 GU toxicities were observed in only 2% and 2%, respectively. No grade 2 or higher acute GI events and 4% grade 2 GI late events were observed. On univariate analysis, disease-free interval after initial definitive RT (P=.07), percent of positive cores at the time of diagnosis (P=.08), interval from first recurrence to salvage HDRB (P=.09), and pre-HDRB prostate-specific antigen (P=.07) were each of borderline significance in predicting biochemical control after salvage HDRB.Conclusions
Prostate HDRB is an effective salvage modality with relatively few long-term toxicities. We provide potential predictors of biochemical control for prostate salvage HDRB.