Fractional myocardial blood volume (fMBV) estimated using ferumoxytol-enhanced magnetic resonance imaging (MRI) (FE-MRI) has the potential to capture a hemodynamic response to myocardial hypoperfusion during contrast steady state without reliance on gadolinium chelates. Ferumoxytol has a long intravascular half-life and its use for steady-state MRI is off-label. The aim of this prospective study was to optimize and evaluate a two-compartment model for estimation of fMBV based on FE-MRI. Nine healthy swine and one swine with artificially induced single-vessel coronary stenosis underwent MRI on a 3.0 T clinical magnet. Myocardial longitudinal spin-lattice relaxation rate (R1) was measured using the 5(3)3(3)3 modified Look-Locker inversion recovery (MOLLI) sequence before and at contrast steady state following seven ferumoxytol infusions (0.125-4.0 mg/kg). fMBV and water exchange were estimated using a two-compartment model. Model-fitted fMBV was compared to simple fast-exchange fMBV approximation and percent change in pre- and postferumoxytol R1. Dose undersampling schemes were investigated to reduce acquisition duration. Variation in fMBV was assessed using one-way analysis of variance. Fast-exchange fMBV and ferumoxytol dose undersampling were evaluated using Bland-Altman analysis. Healthy normal swine showed a mean mid-ventricular fMBV of 7.2 ± 1.4% and water exchange rate of 11.3 ± 5.1 s-1 . There was intersubject variation in fMBV (p < 0.05) without segmental variation (p = 0.387). fMBV derived from eight-dose and four-dose sampling schemes had no significant bias (mean difference = 0.07, p = 0.541, limits of agreement -1.04% [-1.45, -0.62%] to 1.18% [0.77, 1.59%]). Pixel-wise fMBV in one swine model with coronary artery stenosis showed elevated fMBV in ischemic segments (apical anterior: 11.90 ± 4.00%, apical septum: 16.10 ± 5.71%) relative to remote segments (apical inferior: 9.59 ± 3.35%, apical lateral: 9.38 ± 2.35%). A two-compartment model based on FE-MRI using the MOLLI sequence may enable estimation of fMBV in studies of ischemic heart disease. LEVEL OF EVIDENCE: 2. TECHNICAL EFFICACY STAGE: 2.