Dichoptic tone mapping methods aim to leverage stereoscopic displays to increase visual detail and contrast in images and videos. These methods, which have been called both binocular tone mapping and dichoptic contrast enhancement, selectively emphasize contrast differently in the two eyes' views. The visual system integrates these contrast differences into a unified percept, which is theorized to contain more contrast overall than each eye's view on its own. As stereoscopic displays become increasingly common for augmented and virtual reality (AR/VR), dichoptic tone mapping is an appealing technique for imaging pipelines. We sought to examine whether a standard photographic technique, exposure bracketing, could be modified to enhance contrast similarly to dichoptic tone mapping. While assessing the efficacy of this technique with user studies, we also re-evaluated existing dichoptic tone mapping methods. Across several user studies; however, we did not find evidence that either dichoptic tone mapping or dichoptic exposures consistently increased subjective image preferences. We also did not observe improvements in subjective or objective measures of detail visibility. We did find evidence that dichoptic methods enhanced subjective 3D impressions. Here, we present these results and evaluate the potential contributions and current limitations of dichoptic methods for applications in stereoscopic displays.