Carbonate clumped isotope geochemistry has primarily focused on mass spectrometric determination of m/z 47 CO2 for geothermometry, but theoretical calculations and recent experiments indicate paired analysis of the m/z 47 (13C18O16O) and m/z 48 (12C18O18O) isotopologues (referred to as Δ47 and Δ48) can be used to study non-equilibrium isotope fractionations and refine temperature estimates. We utilize 5,448 Δ47 and 3,400 Δ48 replicate measurements of carbonate samples and standards, and 183 Δ47 and 195 Δ48 replicate measurements of gas standards from 2015 to 2021 from a multi-year and multi-instrument data set to constrain Δ47 and Δ48 values for 27 samples and standards, including Devils Hole cave calcite, and study equilibrium Δ47-Δ48, Δ47-temperature, and Δ48-temperature relationships. We compare results to previously published findings and calculate equilibrium regressions based on data from multiple laboratories. We report acid digestion fractionation factors, Δ*63-47 and Δ*64-48, and account for their dependence on the initial clumped isotope values of the mineral.