- Kadonsky, Krystin;
- Naughton, Colleen;
- Susa, Mirjana;
- Olson, Rachel;
- Singh, Guadalupe;
- Daza-Torres, Maria;
- Montesinos-López, J;
- Garcia, Yury;
- Gafurova, Maftuna;
- Gushgari, Adam;
- Cosgrove, John;
- White, Bradley;
- Boehm, Alexandria;
- Wolfe, Marlene;
- Nuño, Miriam;
- Bischel, Heather
INTRODUCTION: Over a third of the communities (39%) in the Central Valley of California, a richly diverse and important agricultural region, are classified as disadvantaged-with inadequate access to healthcare, lower socio-economic status, and higher exposure to air and water pollution. The majority of racial and ethnic minorities are also at higher risk of COVID-19 infection, hospitalization, and death according to the Centers for Disease Control and Prevention. Healthy Central Valley Together established a wastewater-based disease surveillance (WDS) program that aims to achieve greater health equity in the region through partnership with Central Valley communities and the Sewer Coronavirus Alert Network. WDS offers a cost-effective strategy to monitor trends in SARS-CoV-2 community infection rates. METHODS: In this study, we evaluated correlations between public health and wastewater data (represented as SARS-CoV-2 target gene copies normalized by pepper mild mottle virus target gene copies) collected for three Central Valley communities over two periods of COVID-19 infection waves between October 2021 and September 2022. Public health data included clinical case counts at county and sewershed scales as well as COVID-19 hospitalization and intensive care unit admissions. Lag-adjusted hospitalization:wastewater ratios were also evaluated as a retrospective metric of disease severity and corollary to hospitalization:case ratios. RESULTS: Consistent with other studies, strong correlations were found between wastewater and public health data. However, a significant reduction in case:wastewater ratios was observed for all three communities from the first to the second wave of infections, decreasing from an average of 4.7 ± 1.4 over the first infection wave to 0.8 ± 0.4 over the second. DISCUSSION: The decline in case:wastewater ratios was likely due to reduced clinical testing availability and test seeking behavior, highlighting how WDS can fill data gaps associated with under-reporting of cases. Overall, the hospitalization:wastewater ratios remained more stable through the two waves of infections, averaging 0.5 ± 0.3 and 0.3 ± 0.4 over the first and second waves, respectively.