Hydroxypyridinethiones (HOPTOs) are strong ligands for metal ions and potentially useful pharmacophores for inhibiting metalloenzymes relevant to human disease. However, HOPTOs have been sparingly used in drug discovery efforts due, in part, to concerns that this scaffold will act as a promiscuous, non-selective metalloenzyme inhibitor, as well as possess poor pharmacokinetics (PK), which may undermine drug candidates containing this functional group. To advance HOPTOs as a useful pharmacophore for metalloenzyme inhibitors, a library of 22 HOPTO isostere compounds has been synthesized and investigated. This library demonstrates that it is possible to maintain the core metal-binding pharmacophore (MBP) while generating diversity in structure, electronics, and PK properties. This HOPTO library has been screened against a set of four different metalloenzymes, demonstrating that while the same metal-binding donor atoms are maintained, there is a wide range of activity between metalloenzyme targets. Overall, this work shows that HOPTO isosteres are useful MBPs and valuable scaffolds for metalloenzyme inhibitors.