We show that, for points along the moment curve, the bar-and-joint rigidity matroid and the hyperconnectivity matroid coincide, and that both coincide with the \(C^{d-2}_{d-1}\)-cofactor rigidity of points along any (non-degenerate) conic in the plane. For hyperconnectivity in dimension two, having the points in the moment curve is no loss of generality. We also show that, restricted to bipartite graphs, the bar-and-joint rigidity matroid is freer than the hyperconnectivity matroid.
Mathematics Subject Classifications: 52C25, 52B40
Keywords: Rigidity, hyperconnectivity, moment curve, cofactor rigidity