Retinal ganglion cell (RGC) axons converge at the optic nerve head to convey visual information from the retina to the brain. Pathologies such as glaucoma, trauma, and ischemic optic neuropathies injure RGC axons, disrupt transmission of visual stimuli, and cause vision loss. Animal models simulating RGC axon injury include optic nerve crush and transection paradigms. Each of these models has inherent advantages and disadvantages. An optic nerve crush is generally less severe than a transection and can be used to assay axon regeneration across the lesion site. However, differences in crush force and duration can affect tissue responses, resulting in variable reproducibility and lesion completeness. With optic nerve transection, there is a severe and reproducible injury that completely lesions all axons. However, transecting the optic nerve dramatically alters the blood brain barrier by violating the optic nerve sheath, exposing the optic nerve to the peripheral environment. Moreover, regeneration beyond a transection site cannot be assessed without reapposing the cut nerve ends. Furthermore, distinct degenerative changes and cellular pathways are activated by either a crush or transection injury. The method described here incorporates the advantages of both optic nerve crush and transection models while mitigating the disadvantages. Hydrostatic pressure delivered into the optic nerve by microinjection completely transects the optic nerve while maintaining the integrity of the optic nerve sheath. The transected optic nerve ends are reapposed to allow for axon regeneration assays. A potential limitation of this method is the inability to visualize the complete transection, a potential source of variability. However, visual confirmation that the visible portion of the optic nerve has been transected is indicative of a complete optic nerve transection with 90-95% success. This method could be applied to assess axon regeneration promoting strategies in a transection model or investigate interventions that target the axonal compartments.