The bed nucleus of the stria terminalis (BNST) plays an important role in fear, stress, and anxiety. It contains a collection of subnuclei delineated by gross cytoarchitecture features; however, there has yet to be a systematic examination of specific BNST neuronal types and their associated neurochemical makeup. The present study focuses on improved characterization of the anterior BNST based on differing molecular and chemical expression aided by mouse genetics. Specific Cre driver lines crossed with a fluorescent reporter line were used for genetic cell targeting and immunochemical staining. Using this new approach, we were able to robustly identify specific excitatory and inhibitory cell types in the BNST. The presence and distribution of excitatory neurons were firmly established; glutamatergic neurons in the anterior BNST accounted for about 14% and 31% of dorsal and ventral BNST cells, respectively. GABAergic neurons expressing different isoforms of glutamic acid decarboxylase were found to have differential subregional distributions. Almost no parvalbumin-expressing cells were found in the BNST, while somatostatin-expressing cells and calretinin-expressing cells account for modest proportions of BNST cells. In addition, vasoactive intestinal peptide-expressing axonal plexuses were prominent in the oval and juxtacapsular subregions. In addition, we discovered that corticotropin-releasing hormone-expressing cells contain GABAergic and glutamatergic subpopulations. Together, this study reveals new information on excitatory and inhibitory neurons in the BNST, which will facilitate genetic dissection and functional studies of BNST subregions. J. Comp. Neurol. 524:2379-2399, 2016. © 2016 Wiley Periodicals, Inc.