Thirdhand smoke (THS) is the persistent and toxic residue from tobacco smoke in indoor environments. A comprehensive understanding of the chemical constituents of THS is necessary to assess the risks of long-term exposure and to establish reliable THS tracers. The objective of this study was to investigate compounds associated with THS through nontargeted analysis (NTA) of settled house dust samples from smokers' and non-smokers' homes, using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC/TOF-MS). Compounds that were either only present in dust from smokers' homes or that had significantly larger abundance than in non-smokers' homes were termed qualified compounds. We identified 140 qualified compounds, and of these, 42 compounds were tentatively identified by searching matching mass spectra in NIST electron impact (EI) mass spectral library including 20 compounds confirmed with their authentic standards. Among the 42 compounds, 26 compounds were statistically more abundant (p < 0.10) in dust from homes of smokers; seven were tobacco-specific compounds, two of which (nornicotyrine, 3-ethenylpyridine) have not been reported before in house dust. Two compounds, tris (2-chloroethyl) phosphate (a toxic compound used as a flame retardant and reported in tobacco) and propanoic acid, 2-methyl-, 1-(1,1-dimethylethyl)-2-methyl-1,3-propanediyl ester (highly abundant and reported in exhaled air of smokers), were found in dust from all smokers' homes and in zero non-smokers' homes, making these potential THS tracers, possibly associated with recent smoking. Benzyl methyl ketone was significantly higher in dust in smokers' homes, and was previously reported not as a product of tobacco but rather as a form of methamphetamine. This compound was recently reported in mainstream tobacco smoke condensate through NTA as well. These identified potential tracers and chemical components of THS in this study can be further investigated for use in developing THS contamination and exposure assessments.