Fracture interaction mechanisms and reactivation of natural discontinuities under fluid pressurization conditions can represent critical issues in risk assessment of caprock integrity. A field injection test, carried out in a damage fault zone at the decameter scale, i.e., mesoscale, has been studied using a distinct element model. Given the complex structural nature of the damage fault zone hydraulically loaded, the contribution of fracture sets on the bulk permeability has been investigated. It has been shown that their orientation for a given in situ stress field plays a major role. Based on these results, a simpler model with a fluid-driven fracture intersecting a second fracture has been set up to perform a sensitivity analysis. It is in presence of a minimum differential stress value with a minimum angle with the maximum principal stress that the second fracture could be both, hydraulically and mechanically reactivated. Results also showed that in the vicinity of the fluid-driven fracture, a natural fracture will offer contrasted hydromechanical responses on each side of the intersection depending on the stress conditions and its orientation with respect to the stress field. In this case, we show that a hydromechanical decoupling can occur along the same plane. These results provide insights into fracture-controlled permeability of fault zones depending on the properties of the fractures and their hydromechanical interactions for a given in situ stress field.