Introduction: Climate change is causing an increase in the frequency and intensity of extreme heat events, which disproportionately impact the health of vulnerable populations. Heatstroke, the most serious heat-related illness, is a medical emergency that causes multiorgan failure and death without intervention. Rapid recognition and aggressive early treatment are essential to reduce morbidity and mortality. The objective of this study was to evaluate current standards of care for the emergent management of heatstroke and propose an evidence-based algorithm to expedite care.
Methods: We systematically searched PubMed, Embase, and key journals, and reviewed bibliographies. Original research articles, including case studies, were selected if they specifically addressed the recognition and management of heatstroke in any prehospital, emergency department (ED), or intensive care unit population. Reviewers evaluated study quality and abstracted information regarding demographics, scenario, management, and outcome.
Results: In total, 63 articles met full inclusion criteria after full-text review and were included for analysis. Three key themes identified during the qualitative review process included recognition, rapid cooling, and supportive care. Rapid recognition and expedited external or internal cooling methods coupled with multidisciplinary management were associated with improved outcomes. Delays in care are associated with adverse outcomes. We found no current scalable ED alert process to expedite early goal-directed therapies.
Conclusion: Given the increased risk of exposure to heat waves and the time-sensitivity of the condition, EDs and healthcare systems should adopt processes for rapid recognition and management of heatstroke. This study proposes an evidence-based prehospital and ED heat alert pathway to improve early diagnosis and resource mobilization. We also provide an evidence-based treatment pathway to facilitate efficient patient cooling. It is hoped that this protocol will improve care and help healthcare systems adapt to changing environmental conditions.