- Das, Oishika;
- Sun, Raymond;
- Gao, Jian;
- Diaz, Aaron;
- Behnan, Jinan;
- Dubey, Abhishek;
- Meng, Zhipeng;
- Eskandar, Emad;
- Xu, Beisi;
- Lu, Rongze;
- Ho, Winson;
- Yu, Bohyeon;
- Mondal, Isha
UNLABELLED: Glioblastoma (GBM) is an immunologically cold tumor that does not respond to current immunotherapy. Here, we demonstrate a fundamental role for the α-isoform of the catalytic subunit of protein phosphatase-2A (PP2Ac) in regulating glioma immunogenicity. Genetic ablation of PP2Ac in glioma cells enhanced double-stranded DNA (dsDNA) production and cGAS-type I IFN signaling, MHC-I expression, and tumor mutational burden. In coculture experiments, PP2Ac deficiency in glioma cells promoted dendritic cell (DC) cross-presentation and clonal expansion of CD8+ T cells. In vivo, PP2Ac depletion sensitized tumors to immune-checkpoint blockade and radiotherapy treatment. Single-cell analysis demonstrated that PP2Ac deficiency increased CD8+ T-cell, natural killer cell, and DC accumulation and reduced immunosuppressive tumor-associated macrophages. Furthermore, loss of PP2Ac increased IFN signaling in myeloid and tumor cells and reduced expression of a tumor gene signature associated with worse patient survival in The Cancer Genome Atlas. Collectively, this study establishes a novel role for PP2Ac in inhibiting dsDNA-cGAS-STING signaling to suppress antitumor immunity in glioma. SIGNIFICANCE: PP2Ac deficiency promotes cGAS-STING signaling in glioma to induce a tumor-suppressive immune microenvironment, highlighting PP2Ac as a potential therapeutic target to enhance tumor immunogenicity and improve response to immunotherapy.