Objective
Peripheral artery disease (PAD) is a chronic condition characterized by inflammation. Emerging literature suggests that circulating exosomes and their microRNA (miRNA) contents may influence atherosclerosis and vascular remodeling. We hypothesize that circulating exosomes in patients with PAD directly modulate vascular cell phenotype and contain proinflammatory miRNAs.Methods
Exosomes (particle size, 30-150 nm) were isolated from plasma of healthy individuals (n = 6), patients with mild PAD (mPAD; median Rutherford class, 2.5; n = 6), and patients with severe PAD (sPAD; median Rutherford class, 4; n = 5). Exosome identity, size, and concentration were determined by Western blot and nanoparticle tracking analysis. Human vascular smooth muscle cell (VSMC) and endothelial cell (EC) migration was assessed by a standard wound closure assay after exposure to exosome preparations. Monocyte-derived macrophages isolated from healthy volunteers were exposed to exosome preparations, and targeted gene expression was analyzed using quantitative polymerase chain reaction. Exosome miRNA cargos were isolated, and a panel of defined, vascular-active miRNAs was assessed by quantitative polymerase chain reaction.Results
There was no difference in overall exosome particle concentration or size between the three groups (one-way analysis of variance [ANOVA], P > .05). Compared with exosomes from healthy individuals, exosomes from mPAD and sPAD patients increased VSMC migration (1.0 ± 0.09-fold vs 1.5 ± 0.09-fold vs 2.0 ± 0.12-fold wound closure; ANOVA, P < .0001) and inhibited EC migration (1.8 ± 0.07-fold vs 1.5 ± 0.04-fold vs 1.3 ± 0.02-fold wound closure; ANOVA, P < .01) in a stepwise fashion. Exosomes also induced changes in monocyte-derived macrophage gene expression that did not appear PAD specific. Hierarchical analysis of exosome miRNA revealed distinct clustering of vascular-active miRNAs between the three groups. Several miRNAs that promote inflammatory pathways in vascular cells were expressed at higher levels in exosomes from sPAD patients.Conclusions
Circulating exosomes from individuals with PAD exert in vitro functional effects on VSMCs and ECs that may promote adverse vessel remodeling. Exosomes from healthy individuals, mPAD patients, and sPAD patients contain distinct signatures of immune-regulatory miRNA. Together these data suggest that the proinflammatory cargo of circulating exosomes correlates with atherosclerosis severity in PAD patients and could influence vascular injury and repair. (JVS: Vascular Science 2020;1:28-41.).Clinical relevance
Exosomes and their cargo have been implicated in several vascular remodeling processes including atherosclerosis, angiogenesis, and neointimal hyperplasia. In this study, we demonstrate that circulating exosomes from individuals with peripheral artery disease exert in vitro effects on vascular cells that may adversely affect vessel remodeling. Moreover, these exosomes contain elevated levels of vascular-active microRNA. Our results suggest that exosomes may serve as both biomarkers and effectors of vascular disease in patients with peripheral artery disease and motivate further investigation into the role of exosomes and their contents in aberrant remodeling in vascular diseases.