POISe is a spectroscopic imaging technique based on the measurement of surface motion resulting from thermoelastic stress waves produced by short pulse laser irradiation of optically heterogeneous turbid samples. Here we show the capability of POISe to form tomographic images of tissue phantoms using surface displacement measurements taken at several locations following irradiation of a sample with a λ- switched Nd:YAG laser A=1064 nm. The principal component of POISe is a modified Mach-Zehnder interferometer that provides surface displacement measurements with a temporal resolution of 4 ns and a displacement sensitivity of 0.2 nm. By performing simple image reconstructions on data sets acquired from several tissue-like phantoms, we demonstrate the ability of POISe to provide better than 250 μm spatial resolution at depths of 6 to 8 mm in a strongly scattering medium (μ s′=1/mm). This technique shows great promise for high-resolution non-invasive imaging of superficial (< 1 cm) tissue structures.