This report focuses on the design of longitudinal control algorithms for commercial heavy vehicles (CHVs). The algorithms use nonlinear spacing policies, backstepping control design, and aggressive prediction schemes to deal with the presence of significant delays and saturations in the fuel and brake actuators. The algorithms can also deal with delays both in the presence and in the absence of intervehicle communication. A by-product on this research is the development of two software packages, Platoon-Builder and TruckVis, for simulation and animation of CHV platoons. Additionally, another important result of this project is a new simplified framework for evaluating the longitudinal string stability properties of platoons of automated vehicles.