The performance of proton-conducting ionomer membranes used in electrochemical applications such as fuel cells is complicated by an intricate interplay between chemistry and morphology that is challenging to characterize and control. Here, we report on a class of perfluoro ionene chain extended (PFICE) ionomers that contain either one (PFICE-2) or two (PFICE-3) bis(sulfonyl)imide groups on the side-chain in addition to a terminal sulfonic acid group. PFICE ionomers are promising materials, exhibiting greater water uptake and conductivity over a range of relative humidity values compared to prototypical perfluorinated sulfonic acid (PFSA) ionomers. Advanced in situ synchrotron characterization combined with simulations reveals insights into the connections between molecular structure and morphology that dictate performance. Energy-tunable X-rays with sensitivity to sulfur can decipher the unique bonding environment of different protogenic groups on the polymer side-chain. Guided by simulations, X-ray absorption spectroscopy can be sensitive to hydration level and configuration that dictates proton dissociation. In situ resonant X-ray scattering reveals that PFICE ionomers have a phase-separated morphology with enhanced short-range order that persists in both dry and hydrated state, allowing for improved transport pathways across hydration levels. Furthermore, side-chain chemistry and length can be used as a molecular design parameter to predict phase-separated domain spacing. The enhanced conductivity of PFICE ionomers is attributed to a unique side-chain chemistry and structure promoting hydrogen bonding configurations that facilitate proton dissociation at low water content in combination with a well-ordered phase-separated morphology that forms transport pathways. Overall, these results provide guidelines to design new ionomers with improved transport properties and demonstrate the value of in situ characterization methods such as resonant X-ray scattering and spectroscopy for unraveling the structural features in chemically-heterogeneous materials used in electrochemical systems.