The human cationic antimicrobial protein LL-37 is a multifunctional host defense peptide with a wide range of immunomodulatory activities. Previous work has shown that LL-37 exerts both pro- and anti-inflammatory effects. The role of mitochondria in the skin inflammatory effects of LL-37 has not been well studied. Therefore, our aim was to investigate the immunomodulatory effect of LL-37 in HaCaT cells and to delineate the underlying mechanisms related to mitochondrial function. Immunohistochemistry results from tissue microarrays showed strong cytoplasmic LL-37 staining in inflammatory cells in chronic dermatic inflammation. Using exogenous LL-37 stimulation and LL-37 knockdown and overexpression, LL-37 was demonstrated to dramatically reduce the mRNA levels and protein secretion of inflammatory cytokines including IL-6, IL-8, IL-1α and tumor necrosis factor-α (TNF-α), which are induced by lipopolysaccharides (LPS). The anti-inflammatory effects of LL-37 are dependent upon its ability to increase mitochondrial biogenesis and to maintain mitochondrial homeostasis. Furthermore, we observed that LL-37 enhances the LPS-induced phosphorylation of extracellular signal-regulated kinase (ERK1/2) and mammalian target of rapamycin (mTOR). The mTOR inhibitor rapamycin can neutralize the protective effects of LL-37 on mitochondria. In conclusion, these results suggest that high LL-37 expression levels correlate with chronic skin inflammation; mitochondrial dysfunction occurs in HaCaT cells during inflammation; and LL-37 attenuates inflammatory impairment by stimulating mitochondrial biogenesis and protecting mitochondrial function, which are dependent upon mTOR signaling. These findings provide new insights into targeting mitochondria with LL-37 to prevent skin inflammatory reactions.