Background
The generation of long-term durable tumor immunity and prolonged disease-free survival depends on the ability to generate and support CD8+ central memory T-cells. Microsatellite-stable colon cancer is resistant to currently available immunotherapies; thus, development of novel mechanisms to increase both lymphocyte infiltration and central memory formation are needed to improve outcomes in these patients. We have previously demonstrated that both interleukin-2 (IL-2) and LIGHT (TNFSF14) independently enhance antitumor immune responses and hypothesize that combination immunotherapy may increase the CD8+ central memory T-cell response.Methods
Murine colorectal cancer tumors were established in syngeneic mice. Tumors were treated with control, soluble, or liposomal IL-2 at established intervals. A subset of animal tumors overexpressed tumor necrosis superfamily factor LIGHT (TNFSF14). Peripheral blood, splenic, and tumor-infiltrating lymphocytes were isolated for phenotypic studies and flow cytometry.Results
Tumors exposed to a combination of LIGHT and IL-2 experienced a decrease in tumor size compared with IL-2 alone that was not demonstrated in wild-type tumors or between other treatment groups. Combination exposure also increased splenic central memory CD8+ cells compared with IL-2 administration alone, while not increasing tumor-infiltrating lymphocytes. In the periphery, the combination enhanced levels of circulating CD8 T-cells and central memory T-cells, while also increasing circulating T-regulatory cells.Conclusions
Combination of IL-2, whether soluble or liposomal, with exposure to LIGHT results in increased CD8+ central memory cells in the spleen and periphery. New combination immunotherapy strategies that support both effector and memory T-cell functions are critical to enhancing durable antitumor responses and warrant further investigation.