We report a femtosecond response in photoinduced magnetization rotation in the ferromagnetic semiconductor GaMnAs, which allows for detection of a four-state magnetic memory at the femtosecond time scale. The temporal profile of this cooperative magnetization rotation exhibits a discontinuity that reveals two distinct temporal regimes, marked by the transition from a highly non-equilibrium, carrier-mediated regime within the first 200 fs, to a thermal, lattice-heating picosecond regime.