Bacterial genes for molybdenum-containing and tungsten-containing enzymes are often differentially regulated depending on the metal availability in the environment. Here, we describe a new family of transcription factors with an unusual DNA-binding domain related to excisionases of bacteriophages. These transcription factors are associated with genes for various molybdate and tungstate-specific transporting systems as well as molybdo/tungsto-enzymes in a wide range of bacterial genomes. We used a combination of computational and experimental techniques to study a member of the TF family, named TaoR (for tungsten-containing aldehyde oxidoreductase regulator). In Desulfovibrio vulgaris Hildenborough, a model bacterium for sulfate reduction studies, TaoR activates expression of aldehyde oxidoreductase aor and represses tungsten-specific ABC-type transporter tupABC genes under tungsten-replete conditions. TaoR binding sites at aor promoter were identified by electrophoretic mobility shift assay and DNase I footprinting. We also reconstructed TaoR regulons in 45 Deltaproteobacteria by comparative genomics approach and predicted target genes for TaoR family members in other Proteobacteria and Firmicutes.