Background
Chimeric antigen receptor T-cell (CAR-T) therapy is a promising new class of cancer therapy but has a high up-front cost. We evaluated the cost-effectiveness of CAR-T therapy among pediatric patients with relapsed/refractory B-cell acute lymphoblastic leukemia (B-ALL).Methods
We built a microsimulation model for pediatric patients with relapsed/refractory B-ALL receiving either CAR-T therapy or standard of care. Outcomes included costs, quality of life (health utility), complications, and survival. We measured cost-effectiveness with the incremental cost-effectiveness ratio (ICER), with ICERs under $100 000 per quality-adjusted life-year (QALY) considered cost effective. One-way and probabilistic sensitivity analyses were used to test model uncertainty.Results
Compared to standard of care, CAR-T therapy increased overall cost by $528 200 and improved effectiveness by 8.18 QALYs, resulting in an ICER of $64 600/QALY. The model was sensitive to assumptions about long-term CAR-T survival, the complete remission rate of CAR-T patients, and the health utility of long-term survivors. The base model assumed a 76.0% one-year survival with CAR-T, although if this decreased to 57.8%, then CAR-T was no longer cost effective. If the complete remission rate of CAR-T recipients decreased from 81% to 56.2%, or if the health utility of disease-free survivors decreased from 0.94 to 0.66, then CAR-T was no longer cost effective. Probabilistic sensitivity analysis found that CAR-T was cost effective in 94.8% of iterations at a willingness to pay of $100 000/QALY.Conclusion
CAR-T therapy may represent a cost-effective option for pediatric relapsed/refractory B-ALL, although longer follow-up of CAR-T survivors is required to confirm validity of these findings.